Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
import os
|
2 |
import json
|
3 |
import asyncio
|
4 |
-
import logging
|
5 |
-
|
6 |
import torch
|
|
|
|
|
|
|
7 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
8 |
from huggingface_hub import login
|
9 |
from snac import SNAC
|
@@ -12,145 +13,153 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
12 |
# — HF‑Token & Login —
|
13 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
14 |
if HF_TOKEN:
|
15 |
-
login(
|
16 |
|
17 |
-
# — Device
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
|
20 |
-
# — FastAPI
|
21 |
app = FastAPI()
|
22 |
|
23 |
-
# —
|
24 |
@app.get("/")
|
25 |
-
async def
|
26 |
-
return {"message": "
|
27 |
|
28 |
-
# — Modelle
|
29 |
@app.on_event("startup")
|
30 |
async def load_models():
|
31 |
global tokenizer, model, snac
|
32 |
-
|
|
|
33 |
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
|
34 |
|
|
|
35 |
REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
|
36 |
-
logging.info("Lade TTS‑Modell...")
|
37 |
tokenizer = AutoTokenizer.from_pretrained(REPO)
|
38 |
model = AutoModelForCausalLM.from_pretrained(
|
39 |
REPO,
|
40 |
-
device_map="
|
41 |
torch_dtype=torch.bfloat16 if device=="cuda" else None,
|
42 |
-
low_cpu_mem_usage=True
|
|
|
43 |
).to(device)
|
44 |
model.config.pad_token_id = model.config.eos_token_id
|
45 |
-
logging.info("Modelle geladen ✔️")
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
# — Hilfsfunktion: Prompt in Token/Mask umwandeln —
|
53 |
def prepare_inputs(text: str, voice: str):
|
54 |
prompt = f"{voice}: {text}"
|
55 |
-
|
|
|
56 |
start = torch.tensor([[128259]], dtype=torch.int64, device=device)
|
57 |
end = torch.tensor([[128009, 128260]], dtype=torch.int64, device=device)
|
58 |
-
|
59 |
-
|
60 |
-
return
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
b = clean
|
79 |
-
l1.append(b[0])
|
80 |
-
l2.append(b[1])
|
81 |
-
# das Original verschachtelte Layer‑Mapping
|
82 |
-
l3.append(b[2])
|
83 |
-
l3.append(b[3])
|
84 |
-
l2.append(b[4])
|
85 |
-
l3.append(b[5])
|
86 |
-
l3.append(b[6])
|
87 |
codes = [
|
88 |
-
torch.tensor(
|
89 |
-
torch.tensor(
|
90 |
-
torch.tensor(
|
91 |
]
|
92 |
audio = snac.decode(codes).squeeze().cpu().numpy()
|
93 |
-
|
|
|
|
|
94 |
|
95 |
-
# — WebSocket
|
96 |
@app.websocket("/ws/tts")
|
97 |
async def tts_ws(ws: WebSocket):
|
98 |
await ws.accept()
|
99 |
try:
|
100 |
-
# 1) Input empfangen
|
101 |
msg = await ws.receive_text()
|
102 |
-
|
103 |
-
text =
|
104 |
-
voice =
|
105 |
|
106 |
-
#
|
107 |
input_ids, attention_mask = prepare_inputs(text, voice)
|
108 |
past_kvs = None
|
109 |
-
buffer = []
|
110 |
|
111 |
-
#
|
112 |
-
# indem Du in jedem Durchgang bis zu 50 Token samplet und aufsummierst)
|
113 |
while True:
|
114 |
out = model(
|
115 |
input_ids=input_ids if past_kvs is None else None,
|
116 |
attention_mask=attention_mask if past_kvs is None else None,
|
117 |
past_key_values=past_kvs,
|
118 |
use_cache=True,
|
|
|
119 |
)
|
120 |
-
|
121 |
-
|
122 |
-
probs = torch.softmax(logits, dim=-1)
|
123 |
-
next_token = torch.multinomial(probs, num_samples=1).item()
|
124 |
|
125 |
-
# Ende
|
126 |
-
if
|
127 |
break
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
131 |
continue
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
pcm = decode_block(block)
|
140 |
-
except Exception as e:
|
141 |
-
logging.error(f"Fehler beim Dekodieren: {e}")
|
142 |
-
await ws.close(code=1011)
|
143 |
-
return
|
144 |
await ws.send_bytes(pcm)
|
145 |
|
146 |
-
#
|
147 |
-
input_ids =
|
148 |
-
attention_mask =
|
149 |
|
150 |
-
#
|
151 |
await ws.close()
|
152 |
except WebSocketDisconnect:
|
153 |
-
|
154 |
except Exception as e:
|
155 |
-
|
156 |
await ws.close(code=1011)
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import json
|
3 |
import asyncio
|
|
|
|
|
4 |
import torch
|
5 |
+
# Bugfix für PyTorch 2.2.x Flash‑SDP‑Assertion
|
6 |
+
torch.backends.cuda.enable_flash_sdp(False)
|
7 |
+
|
8 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
9 |
from huggingface_hub import login
|
10 |
from snac import SNAC
|
|
|
13 |
# — HF‑Token & Login —
|
14 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
15 |
if HF_TOKEN:
|
16 |
+
login(HF_TOKEN)
|
17 |
|
18 |
+
# — Device wählen —
|
19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
|
21 |
+
# — FastAPI instanzieren —
|
22 |
app = FastAPI()
|
23 |
|
24 |
+
# — Hello‑Route, damit GET / kein 404 mehr gibt —
|
25 |
@app.get("/")
|
26 |
+
async def read_root():
|
27 |
+
return {"message": "Orpheus TTS WebSocket Server läuft"}
|
28 |
|
29 |
+
# — Modelle beim Startup laden —
|
30 |
@app.on_event("startup")
|
31 |
async def load_models():
|
32 |
global tokenizer, model, snac
|
33 |
+
|
34 |
+
# SNAC für Audio‑Decoding
|
35 |
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
|
36 |
|
37 |
+
# Orpheus‑TTS Base
|
38 |
REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
|
|
|
39 |
tokenizer = AutoTokenizer.from_pretrained(REPO)
|
40 |
model = AutoModelForCausalLM.from_pretrained(
|
41 |
REPO,
|
42 |
+
device_map={"": 0} if device=="cuda" else None,
|
43 |
torch_dtype=torch.bfloat16 if device=="cuda" else None,
|
44 |
+
low_cpu_mem_usage=True,
|
45 |
+
return_legacy_cache=True # für compatibility mit past_key_values als Tuple
|
46 |
).to(device)
|
47 |
model.config.pad_token_id = model.config.eos_token_id
|
|
|
48 |
|
49 |
+
# --- Logit‑Masking vorbereiten ---
|
50 |
+
# reine Audio‑Tokens laufen von 128266 bis 128266+4096-1
|
51 |
+
AUDIO_OFFSET = 128266
|
52 |
+
AUDIO_COUNT = 4096
|
53 |
+
valid_audio = torch.arange(AUDIO_OFFSET, AUDIO_OFFSET + AUDIO_COUNT, device=device)
|
54 |
+
ctrl_tokens = torch.tensor([128257, model.config.eos_token_id], device=device)
|
55 |
+
global ALLOWED_IDS
|
56 |
+
ALLOWED_IDS = torch.cat([valid_audio, ctrl_tokens])
|
57 |
+
|
58 |
+
def sample_from_logits(logits: torch.Tensor) -> int:
|
59 |
+
"""
|
60 |
+
Maskt alle IDs außer ALLOWED_IDS und sampelt dann einen Token.
|
61 |
+
"""
|
62 |
+
# logits: [1, vocab_size]
|
63 |
+
mask = torch.full_like(logits, float("-inf"))
|
64 |
+
mask[0, ALLOWED_IDS] = 0.0
|
65 |
+
probs = torch.softmax(logits + mask, dim=-1)
|
66 |
+
return torch.multinomial(probs, num_samples=1).item()
|
67 |
|
|
|
68 |
def prepare_inputs(text: str, voice: str):
|
69 |
prompt = f"{voice}: {text}"
|
70 |
+
ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
71 |
+
# Start‐/End‐Marker
|
72 |
start = torch.tensor([[128259]], dtype=torch.int64, device=device)
|
73 |
end = torch.tensor([[128009, 128260]], dtype=torch.int64, device=device)
|
74 |
+
input_ids = torch.cat([start, ids, end], dim=1)
|
75 |
+
attention_mask = torch.ones_like(input_ids, device=device)
|
76 |
+
return input_ids, attention_mask
|
77 |
+
|
78 |
+
def decode_block(block: list[int]) -> bytes:
|
79 |
+
"""
|
80 |
+
Aus 7 gesampelten Audio‑Codes einen PCM‑16‑Byte‐Block dekodieren.
|
81 |
+
Hier erwarten wir block[i] = raw_token - 128266.
|
82 |
+
"""
|
83 |
+
layer1, layer2, layer3 = [], [], []
|
84 |
+
b = block
|
85 |
+
layer1.append(b[0])
|
86 |
+
layer2.append(b[1] - 4096)
|
87 |
+
layer3.append(b[2] - 2*4096)
|
88 |
+
layer3.append(b[3] - 3*4096)
|
89 |
+
layer2.append(b[4] - 4*4096)
|
90 |
+
layer3.append(b[5] - 5*4096)
|
91 |
+
layer3.append(b[6] - 6*4096)
|
92 |
+
|
93 |
+
dev = next(snac.parameters()).device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
codes = [
|
95 |
+
torch.tensor(layer1, device=dev).unsqueeze(0),
|
96 |
+
torch.tensor(layer2, device=dev).unsqueeze(0),
|
97 |
+
torch.tensor(layer3, device=dev).unsqueeze(0),
|
98 |
]
|
99 |
audio = snac.decode(codes).squeeze().cpu().numpy()
|
100 |
+
# in PCM16 umwandeln
|
101 |
+
pcm16 = (audio * 32767).astype("int16").tobytes()
|
102 |
+
return pcm16
|
103 |
|
104 |
+
# — WebSocket Endpoint für TTS Streaming —
|
105 |
@app.websocket("/ws/tts")
|
106 |
async def tts_ws(ws: WebSocket):
|
107 |
await ws.accept()
|
108 |
try:
|
|
|
109 |
msg = await ws.receive_text()
|
110 |
+
req = json.loads(msg)
|
111 |
+
text = req.get("text", "")
|
112 |
+
voice = req.get("voice", "Jakob")
|
113 |
|
114 |
+
# Inputs vorbereiten
|
115 |
input_ids, attention_mask = prepare_inputs(text, voice)
|
116 |
past_kvs = None
|
117 |
+
buffer = [] # sammelt die 7 Audio‑Codes
|
118 |
|
119 |
+
# Token‑für‑Token Loop
|
|
|
120 |
while True:
|
121 |
out = model(
|
122 |
input_ids=input_ids if past_kvs is None else None,
|
123 |
attention_mask=attention_mask if past_kvs is None else None,
|
124 |
past_key_values=past_kvs,
|
125 |
use_cache=True,
|
126 |
+
return_dict=True
|
127 |
)
|
128 |
+
past_kvs = out.past_key_values
|
129 |
+
next_tok = sample_from_logits(out.logits[:, -1, :])
|
|
|
|
|
130 |
|
131 |
+
# Ende?
|
132 |
+
if next_tok == model.config.eos_token_id:
|
133 |
break
|
134 |
+
|
135 |
+
# Reset bei neuem Audio‑Block‑Start
|
136 |
+
if next_tok == 128257:
|
137 |
+
buffer.clear()
|
138 |
+
input_ids = torch.tensor([[next_tok]], device=device)
|
139 |
+
attention_mask = torch.ones_like(input_ids)
|
140 |
continue
|
141 |
|
142 |
+
# Audio‑Code sammeln (Offset abziehen)
|
143 |
+
buffer.append(next_tok - 128266)
|
144 |
+
# sobald wir 7 Codes haben → dekodieren & senden
|
145 |
+
if len(buffer) == 7:
|
146 |
+
pcm = decode_block(buffer)
|
147 |
+
buffer.clear()
|
|
|
|
|
|
|
|
|
|
|
148 |
await ws.send_bytes(pcm)
|
149 |
|
150 |
+
# nächster Schritt: genau diesen Token wieder einspeisen
|
151 |
+
input_ids = torch.tensor([[next_tok]], device=device)
|
152 |
+
attention_mask = torch.ones_like(input_ids)
|
153 |
|
154 |
+
# sauber beenden
|
155 |
await ws.close()
|
156 |
except WebSocketDisconnect:
|
157 |
+
pass
|
158 |
except Exception as e:
|
159 |
+
print("Error in /ws/tts:", e)
|
160 |
await ws.close(code=1011)
|
161 |
+
|
162 |
+
# — CLI zum lokalen Testen —
|
163 |
+
if __name__ == "__main__":
|
164 |
+
import uvicorn
|
165 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860)
|