Tomtom84's picture
Update app.py
9bf14d0 verified
raw
history blame
4.32 kB
import os
import json
import asyncio
import torch
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from huggingface_hub import login
from snac import SNAC
from transformers import AutoModelForCausalLM, AutoTokenizer
# — HF‑Token & Login —
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
login(HF_TOKEN)
# — Device wählen —
device = "cuda" if torch.cuda.is_available() else "cpu"
# — FastAPI instanziieren —
app = FastAPI()
# — Hello‑Route, damit kein 404 bei GET / mehr kommt —
@app.get("/")
async def read_root():
return {"message": "Hello, world!"}
# — Modelle bei Startup laden —
@app.on_event("startup")
async def load_models():
global tokenizer, model, snac
# SNAC laden
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
# TTS‑Modell laden
model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map={"": 0} if device == "cuda" else None,
torch_dtype=torch.bfloat16 if device == "cuda" else None,
low_cpu_mem_usage=True
)
# Pad‑ID auf EOS einstellen
model.config.pad_token_id = model.config.eos_token_id
# — Hilfsfunktionen —
def prepare_inputs(text: str, voice: str):
prompt = f"{voice}: {text}"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
# Start‑/End‑Marker
start = torch.tensor([[128259]], dtype=torch.int64, device=device)
end = torch.tensor([[128009, 128260]], dtype=torch.int64, device=device)
ids = torch.cat([start, input_ids, end], dim=1)
mask = torch.ones_like(ids)
return ids, mask
def decode_block(block_tokens: list[int]):
# aus 7 Tokens einen SNAC‑Decode‑Block bauen
layer1, layer2, layer3 = [], [], []
b = block_tokens
layer1.append(b[0])
layer2.append(b[1] - 4096)
layer3.append(b[2] - 2*4096)
layer3.append(b[3] - 3*4096)
layer2.append(b[4] - 4*4096)
layer3.append(b[5] - 5*4096)
layer3.append(b[6] - 6*4096)
codes = [
torch.tensor(layer1, device=device).unsqueeze(0),
torch.tensor(layer2, device=device).unsqueeze(0),
torch.tensor(layer3, device=device).unsqueeze(0),
]
# ergibt FloatTensor shape (1, N), @24 kHz
audio = snac.decode(codes).squeeze().cpu().numpy()
# in PCM16 umwandeln
return (audio * 32767).astype("int16").tobytes()
# — WebSocket Endpoint für TTS Streaming —
@app.websocket("/ws/tts")
async def tts_ws(ws: WebSocket):
await ws.accept()
try:
# erst die Anfrage als JSON empfangen
msg = await ws.receive_text()
req = json.loads(msg)
text = req.get("text", "")
voice = req.get("voice", "Jakob")
# Inputs bauen
input_ids, attention_mask = prepare_inputs(text, voice)
past_kvs = None
collected = []
# Token‑für‑Token loop
while True:
out = model(
input_ids=input_ids if past_kvs is None else None,
attention_mask=attention_mask if past_kvs is None else None,
past_key_values=past_kvs,
use_cache=True,
)
logits = out.logits[:, -1, :]
past_kvs = out.past_key_values
# Sampling
probs = torch.softmax(logits, dim=-1)
nxt = torch.multinomial(probs, num_samples=1).item()
# Ende, wenn EOS
if nxt == model.config.eos_token_id:
break
# Reset bei neuem Start‑Marker
if nxt == 128257:
collected = []
continue
# Audio‑Code offsetten und sammeln
collected.append(nxt - 128266)
# sobald 7 Stück, direkt dekodieren und senden
if len(collected) == 7:
pcm = decode_block(collected)
collected = []
await ws.send_bytes(pcm)
# nach Ende sauber schließen
await ws.close()
except WebSocketDisconnect:
# Client hat disconnectet
pass
except Exception as e:
# bei Fehlern 1011 senden
print("Error in /ws/tts:", e)
await ws.close(code=1011)