Spaces:
Paused
Paused
import os | |
import json | |
import asyncio | |
import torch | |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect | |
from huggingface_hub import login | |
from snac import SNAC | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# — HF‑Token & Login — | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
if HF_TOKEN: | |
login(HF_TOKEN) | |
# — Device wählen — | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# — FastAPI instanziieren — | |
app = FastAPI() | |
# — Hello‑Route, damit kein 404 bei GET / mehr kommt — | |
async def read_root(): | |
return {"message": "Hello, world!"} | |
# — Modelle bei Startup laden — | |
async def load_models(): | |
global tokenizer, model, snac | |
# SNAC laden | |
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device) | |
# TTS‑Modell laden | |
model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
device_map={"": 0} if device == "cuda" else None, | |
torch_dtype=torch.bfloat16 if device == "cuda" else None, | |
low_cpu_mem_usage=True | |
) | |
# Pad‑ID auf EOS einstellen | |
model.config.pad_token_id = model.config.eos_token_id | |
# — Hilfsfunktionen — | |
def prepare_inputs(text: str, voice: str): | |
prompt = f"{voice}: {text}" | |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) | |
# Start‑/End‑Marker | |
start = torch.tensor([[128259]], dtype=torch.int64, device=device) | |
end = torch.tensor([[128009, 128260]], dtype=torch.int64, device=device) | |
ids = torch.cat([start, input_ids, end], dim=1) | |
mask = torch.ones_like(ids) | |
return ids, mask | |
def decode_block(block_tokens: list[int]): | |
# aus 7 Tokens einen SNAC‑Decode‑Block bauen | |
layer1, layer2, layer3 = [], [], [] | |
b = block_tokens | |
layer1.append(b[0]) | |
layer2.append(b[1] - 4096) | |
layer3.append(b[2] - 2*4096) | |
layer3.append(b[3] - 3*4096) | |
layer2.append(b[4] - 4*4096) | |
layer3.append(b[5] - 5*4096) | |
layer3.append(b[6] - 6*4096) | |
codes = [ | |
torch.tensor(layer1, device=device).unsqueeze(0), | |
torch.tensor(layer2, device=device).unsqueeze(0), | |
torch.tensor(layer3, device=device).unsqueeze(0), | |
] | |
# ergibt FloatTensor shape (1, N), @24 kHz | |
audio = snac.decode(codes).squeeze().cpu().numpy() | |
# in PCM16 umwandeln | |
return (audio * 32767).astype("int16").tobytes() | |
# — WebSocket Endpoint für TTS Streaming — | |
async def tts_ws(ws: WebSocket): | |
await ws.accept() | |
try: | |
# erst die Anfrage als JSON empfangen | |
msg = await ws.receive_text() | |
req = json.loads(msg) | |
text = req.get("text", "") | |
voice = req.get("voice", "Jakob") | |
# Inputs bauen | |
input_ids, attention_mask = prepare_inputs(text, voice) | |
past_kvs = None | |
collected = [] | |
# Token‑für‑Token loop | |
while True: | |
out = model( | |
input_ids=input_ids if past_kvs is None else None, | |
attention_mask=attention_mask if past_kvs is None else None, | |
past_key_values=past_kvs, | |
use_cache=True, | |
) | |
logits = out.logits[:, -1, :] | |
past_kvs = out.past_key_values | |
# Sampling | |
probs = torch.softmax(logits, dim=-1) | |
nxt = torch.multinomial(probs, num_samples=1).item() | |
# Ende, wenn EOS | |
if nxt == model.config.eos_token_id: | |
break | |
# Reset bei neuem Start‑Marker | |
if nxt == 128257: | |
collected = [] | |
continue | |
# Audio‑Code offsetten und sammeln | |
collected.append(nxt - 128266) | |
# sobald 7 Stück, direkt dekodieren und senden | |
if len(collected) == 7: | |
pcm = decode_block(collected) | |
collected = [] | |
await ws.send_bytes(pcm) | |
# nach Ende sauber schließen | |
await ws.close() | |
except WebSocketDisconnect: | |
# Client hat disconnectet | |
pass | |
except Exception as e: | |
# bei Fehlern 1011 senden | |
print("Error in /ws/tts:", e) | |
await ws.close(code=1011) | |