Spaces:
Runtime error
Runtime error
File size: 12,212 Bytes
b720398 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import json
import math
import os
import random
import sys
import tempfile
from dataclasses import dataclass
from http import HTTPStatus
from typing import Optional, Union
import dashscope
import torch
from PIL import Image
try:
from flash_attn import flash_attn_varlen_func
FLASH_VER = 2
except ModuleNotFoundError:
flash_attn_varlen_func = None # in compatible with CPU machines
FLASH_VER = None
LM_EN_SYS_PROMPT = "You are an advanced AI model tasked with generating and extending structured and detailed video captions. You must respond in the language used by the user."
@dataclass
class PromptOutput(object):
status: bool
prompt: str
seed: int
system_prompt: str
message: str
def add_custom_field(self, key: str, value) -> None:
self.__setattr__(key, value)
class PromptExpander:
def __init__(self, model_name, is_vl=False, device=0, **kwargs):
self.model_name = model_name
self.is_vl = is_vl
self.device = device
def extend_with_img(self,
prompt,
system_prompt,
image=None,
seed=-1,
*args,
**kwargs):
pass
def extend(self, prompt, system_prompt, seed=-1, *args, **kwargs):
pass
def decide_system_prompt(self, tar_lang="en"):
return LM_EN_SYS_PROMPT
def __call__(self,
prompt,
tar_lang="en",
image=None,
seed=-1,
*args,
**kwargs):
system_prompt = self.decide_system_prompt(tar_lang=tar_lang)
if seed < 0:
seed = random.randint(0, sys.maxsize)
if image is not None and self.is_vl:
return self.extend_with_img(
prompt, system_prompt, image=image, seed=seed, *args, **kwargs)
elif not self.is_vl:
return self.extend(prompt, system_prompt, seed, *args, **kwargs)
else:
raise NotImplementedError
class QwenPromptExpander(PromptExpander):
def __init__(self, model_name=None, device=0, is_vl=False, **kwargs):
'''
Args:
model_name: Use predefined model names such as 'QwenVL2.5_7B' and 'Qwen2.5_14B',
which are specific versions of the Qwen model. Alternatively, you can use the
local path to a downloaded model or the model name from Hugging Face."
Detailed Breakdown:
Predefined Model Names:
* 'QwenVL2.5_7B' and 'Qwen2.5_14B' are specific versions of the Qwen model.
Local Path:
* You can provide the path to a model that you have downloaded locally.
Hugging Face Model Name:
* You can also specify the model name from Hugging Face's model hub.
is_vl: A flag indicating whether the task involves visual-language processing.
**kwargs: Additional keyword arguments that can be passed to the function or method.
'''
if model_name is None:
model_name = 'ZuluVision/MoviiGen1.1_Prompt_Rewriter'
super().__init__(model_name, is_vl, device, **kwargs)
self.model_name = model_name
if self.is_vl:
raise NotImplementedError("VL is not supported")
from transformers import AutoModelForCausalLM, AutoTokenizer
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype=torch.float16
if "AWQ" in self.model_name else "auto",
attn_implementation="flash_attention_2"
if FLASH_VER == 2 else None,
device_map="cpu")
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
def extend(self, prompt, system_prompt, seed=-1, *args, **kwargs):
self.model = self.model.to(self.device)
messages = [{
"role": "system",
"content": system_prompt
}, {
"role": "user",
"content": prompt
}]
text = self.tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True)
model_inputs = self.tokenizer([text],
return_tensors="pt").to(self.model.device)
generated_ids = self.model.generate(**model_inputs, max_new_tokens=512)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(
model_inputs.input_ids, generated_ids)
]
expanded_prompt = self.tokenizer.batch_decode(
generated_ids, skip_special_tokens=True)[0]
self.model = self.model.to("cpu")
return PromptOutput(
status=True,
prompt=expanded_prompt,
seed=seed,
system_prompt=system_prompt,
message=json.dumps({"content": expanded_prompt},
ensure_ascii=False))
def extend_with_img(self,
prompt,
system_prompt,
image: Union[Image.Image, str] = None,
seed=-1,
*args,
**kwargs):
self.model = self.model.to(self.device)
messages = [{
'role': 'system',
'content': [{
"type": "text",
"text": system_prompt
}]
}, {
"role":
"user",
"content": [
{
"type": "image",
"image": image,
},
{
"type": "text",
"text": prompt
},
],
}]
# Preparation for inference
text = self.processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = self.process_vision_info(messages)
inputs = self.processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(self.device)
# Inference: Generation of the output
generated_ids = self.model.generate(**inputs, max_new_tokens=512)
generated_ids_trimmed = [
out_ids[len(in_ids):]
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
expanded_prompt = self.processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False)[0]
self.model = self.model.to("cpu")
return PromptOutput(
status=True,
prompt=expanded_prompt,
seed=seed,
system_prompt=system_prompt,
message=json.dumps({"content": expanded_prompt},
ensure_ascii=False))
if __name__ == "__main__":
seed = 100
prompt = "夏日海滩度假风格,一只戴着墨镜的白色猫咪坐在冲浪板上。猫咪毛发蓬松,表情悠闲,直视镜头。背景是模糊的海滩景色,海水清澈,远处有绿色的山丘和蓝天白云。猫咪的姿态自然放松,仿佛在享受海风和阳光。近景特写,强调猫咪的细节和海滩的清新氛围。"
en_prompt = "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
# test cases for prompt extend
ds_model_name = "qwen-plus"
# for qwenmodel, you can download the model form modelscope or huggingface and use the model path as model_name
qwen_model_name = "./models/Qwen2.5-14B-Instruct/" # VRAM: 29136MiB
# qwen_model_name = "./models/Qwen2.5-14B-Instruct-AWQ/" # VRAM: 10414MiB
# test dashscope api
dashscope_prompt_expander = DashScopePromptExpander(
model_name=ds_model_name)
dashscope_result = dashscope_prompt_expander(prompt, tar_lang="ch")
print("LM dashscope result -> ch",
dashscope_result.prompt) #dashscope_result.system_prompt)
dashscope_result = dashscope_prompt_expander(prompt, tar_lang="en")
print("LM dashscope result -> en",
dashscope_result.prompt) #dashscope_result.system_prompt)
dashscope_result = dashscope_prompt_expander(en_prompt, tar_lang="ch")
print("LM dashscope en result -> ch",
dashscope_result.prompt) #dashscope_result.system_prompt)
dashscope_result = dashscope_prompt_expander(en_prompt, tar_lang="en")
print("LM dashscope en result -> en",
dashscope_result.prompt) #dashscope_result.system_prompt)
# # test qwen api
qwen_prompt_expander = QwenPromptExpander(
model_name=qwen_model_name, is_vl=False, device=0)
qwen_result = qwen_prompt_expander(prompt, tar_lang="ch")
print("LM qwen result -> ch",
qwen_result.prompt) #qwen_result.system_prompt)
qwen_result = qwen_prompt_expander(prompt, tar_lang="en")
print("LM qwen result -> en",
qwen_result.prompt) # qwen_result.system_prompt)
qwen_result = qwen_prompt_expander(en_prompt, tar_lang="ch")
print("LM qwen en result -> ch",
qwen_result.prompt) #, qwen_result.system_prompt)
qwen_result = qwen_prompt_expander(en_prompt, tar_lang="en")
print("LM qwen en result -> en",
qwen_result.prompt) # , qwen_result.system_prompt)
# test case for prompt-image extend
ds_model_name = "qwen-vl-max"
#qwen_model_name = "./models/Qwen2.5-VL-3B-Instruct/" #VRAM: 9686MiB
qwen_model_name = "./models/Qwen2.5-VL-7B-Instruct-AWQ/" # VRAM: 8492
image = "./examples/i2v_input.JPG"
# test dashscope api why image_path is local directory; skip
dashscope_prompt_expander = DashScopePromptExpander(
model_name=ds_model_name, is_vl=True)
dashscope_result = dashscope_prompt_expander(
prompt, tar_lang="ch", image=image, seed=seed)
print("VL dashscope result -> ch",
dashscope_result.prompt) #, dashscope_result.system_prompt)
dashscope_result = dashscope_prompt_expander(
prompt, tar_lang="en", image=image, seed=seed)
print("VL dashscope result -> en",
dashscope_result.prompt) # , dashscope_result.system_prompt)
dashscope_result = dashscope_prompt_expander(
en_prompt, tar_lang="ch", image=image, seed=seed)
print("VL dashscope en result -> ch",
dashscope_result.prompt) #, dashscope_result.system_prompt)
dashscope_result = dashscope_prompt_expander(
en_prompt, tar_lang="en", image=image, seed=seed)
print("VL dashscope en result -> en",
dashscope_result.prompt) # , dashscope_result.system_prompt)
# test qwen api
qwen_prompt_expander = QwenPromptExpander(
model_name=qwen_model_name, is_vl=True, device=0)
qwen_result = qwen_prompt_expander(
prompt, tar_lang="ch", image=image, seed=seed)
print("VL qwen result -> ch",
qwen_result.prompt) #, qwen_result.system_prompt)
qwen_result = qwen_prompt_expander(
prompt, tar_lang="en", image=image, seed=seed)
print("VL qwen result ->en",
qwen_result.prompt) # , qwen_result.system_prompt)
qwen_result = qwen_prompt_expander(
en_prompt, tar_lang="ch", image=image, seed=seed)
print("VL qwen vl en result -> ch",
qwen_result.prompt) #, qwen_result.system_prompt)
qwen_result = qwen_prompt_expander(
en_prompt, tar_lang="en", image=image, seed=seed)
print("VL qwen vl en result -> en",
qwen_result.prompt) # , qwen_result.system_prompt)
|