Spaces:
Runtime error
Runtime error
Upload 25 files
Browse files- requirements.txt +16 -0
- t2v_14B_singleGPU.py +205 -0
- wan/__init__.py +2 -0
- wan/configs/__init__.py +43 -0
- wan/configs/shared_config.py +20 -0
- wan/configs/wan_t2v_14B.py +29 -0
- wan/distributed/__init__.py +0 -0
- wan/distributed/fsdp.py +32 -0
- wan/distributed/xdit_context_parallel.py +198 -0
- wan/distributed/xdit_context_parallel_bk.py +192 -0
- wan/modules/__init__.py +16 -0
- wan/modules/attention.py +179 -0
- wan/modules/clip.py +542 -0
- wan/modules/model.py +633 -0
- wan/modules/t5.py +518 -0
- wan/modules/tokenizers.py +82 -0
- wan/modules/vae.py +663 -0
- wan/modules/xlm_roberta.py +170 -0
- wan/text2video.py +271 -0
- wan/utils/__init__.py +8 -0
- wan/utils/fm_solvers.py +934 -0
- wan/utils/fm_solvers_unipc.py +803 -0
- wan/utils/prompt_extend.py +291 -0
- wan/utils/qwen_vl_utils.py +363 -0
- wan/utils/utils.py +118 -0
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=2.4.0
|
2 |
+
torchvision>=0.19.0
|
3 |
+
opencv-python>=4.9.0.80
|
4 |
+
diffusers>=0.31.0
|
5 |
+
transformers>=4.49.0
|
6 |
+
tokenizers>=0.20.3
|
7 |
+
accelerate>=1.1.1
|
8 |
+
tqdm
|
9 |
+
imageio
|
10 |
+
easydict
|
11 |
+
ftfy
|
12 |
+
imageio-ffmpeg
|
13 |
+
flash_attn
|
14 |
+
gradio>=5.0.0
|
15 |
+
numpy>=1.23.5,<2
|
16 |
+
xfuser
|
t2v_14B_singleGPU.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import argparse
|
3 |
+
import os.path as osp
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
import warnings
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
warnings.filterwarnings('ignore')
|
11 |
+
|
12 |
+
# Model
|
13 |
+
sys.path.insert(0, os.path.sep.join(osp.realpath(__file__).split(os.path.sep)[:-2]))
|
14 |
+
import wan
|
15 |
+
from wan.configs import WAN_CONFIGS
|
16 |
+
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
|
17 |
+
from wan.utils.utils import cache_video
|
18 |
+
|
19 |
+
# Global Var
|
20 |
+
prompt_expander = None
|
21 |
+
wan_t2v = None
|
22 |
+
|
23 |
+
|
24 |
+
# Button Func
|
25 |
+
def prompt_enc(prompt, tar_lang):
|
26 |
+
global prompt_expander
|
27 |
+
prompt_output = prompt_expander(prompt, tar_lang=tar_lang.lower())
|
28 |
+
if prompt_output.status == False:
|
29 |
+
return prompt
|
30 |
+
else:
|
31 |
+
return prompt_output.prompt
|
32 |
+
|
33 |
+
|
34 |
+
def t2v_generation(txt2vid_prompt, resolution, sd_steps, guide_scale,
|
35 |
+
shift_scale, seed, n_prompt):
|
36 |
+
global wan_t2v
|
37 |
+
# print(f"{txt2vid_prompt},{resolution},{sd_steps},{guide_scale},{shift_scale},{seed},{n_prompt}")
|
38 |
+
|
39 |
+
W = int(resolution.split("*")[0])
|
40 |
+
H = int(resolution.split("*")[1])
|
41 |
+
video = wan_t2v.generate(
|
42 |
+
txt2vid_prompt,
|
43 |
+
size=(W, H),
|
44 |
+
shift=shift_scale,
|
45 |
+
sampling_steps=sd_steps,
|
46 |
+
guide_scale=guide_scale,
|
47 |
+
n_prompt=n_prompt,
|
48 |
+
seed=seed,
|
49 |
+
offload_model=True)
|
50 |
+
|
51 |
+
cache_video(
|
52 |
+
tensor=video[None],
|
53 |
+
save_file="example.mp4",
|
54 |
+
fps=16,
|
55 |
+
nrow=1,
|
56 |
+
normalize=True,
|
57 |
+
value_range=(-1, 1))
|
58 |
+
|
59 |
+
return "example.mp4"
|
60 |
+
|
61 |
+
|
62 |
+
# Interface
|
63 |
+
def gradio_interface():
|
64 |
+
with gr.Blocks() as demo:
|
65 |
+
gr.Markdown("""
|
66 |
+
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
|
67 |
+
Wan2.1 (T2V-14B)
|
68 |
+
</div>
|
69 |
+
<div style="text-align: center; font-size: 16px; font-weight: normal; margin-bottom: 20px;">
|
70 |
+
Wan: Open and Advanced Large-Scale Video Generative Models.
|
71 |
+
</div>
|
72 |
+
""")
|
73 |
+
|
74 |
+
with gr.Row():
|
75 |
+
with gr.Column():
|
76 |
+
txt2vid_prompt = gr.Textbox(
|
77 |
+
label="Prompt",
|
78 |
+
placeholder="Describe the video you want to generate",
|
79 |
+
)
|
80 |
+
tar_lang = gr.Radio(
|
81 |
+
choices=["CH", "EN"],
|
82 |
+
label="Target language of prompt enhance",
|
83 |
+
value="CH")
|
84 |
+
run_p_button = gr.Button(value="Prompt Enhance")
|
85 |
+
|
86 |
+
with gr.Accordion("Advanced Options", open=True):
|
87 |
+
resolution = gr.Dropdown(
|
88 |
+
label='Resolution(Width*Height)',
|
89 |
+
choices=[
|
90 |
+
'720*1280', '1280*720', '960*960', '1088*832',
|
91 |
+
'832*1088', '480*832', '832*480', '624*624',
|
92 |
+
'704*544', '544*704'
|
93 |
+
],
|
94 |
+
value='720*1280')
|
95 |
+
|
96 |
+
with gr.Row():
|
97 |
+
sd_steps = gr.Slider(
|
98 |
+
label="Diffusion steps",
|
99 |
+
minimum=1,
|
100 |
+
maximum=1000,
|
101 |
+
value=50,
|
102 |
+
step=1)
|
103 |
+
guide_scale = gr.Slider(
|
104 |
+
label="Guide scale",
|
105 |
+
minimum=0,
|
106 |
+
maximum=20,
|
107 |
+
value=5.0,
|
108 |
+
step=1)
|
109 |
+
with gr.Row():
|
110 |
+
shift_scale = gr.Slider(
|
111 |
+
label="Shift scale",
|
112 |
+
minimum=0,
|
113 |
+
maximum=10,
|
114 |
+
value=5.0,
|
115 |
+
step=1)
|
116 |
+
seed = gr.Slider(
|
117 |
+
label="Seed",
|
118 |
+
minimum=-1,
|
119 |
+
maximum=2147483647,
|
120 |
+
step=1,
|
121 |
+
value=-1)
|
122 |
+
n_prompt = gr.Textbox(
|
123 |
+
label="Negative Prompt",
|
124 |
+
placeholder="Describe the negative prompt you want to add"
|
125 |
+
)
|
126 |
+
|
127 |
+
run_t2v_button = gr.Button("Generate Video")
|
128 |
+
|
129 |
+
with gr.Column():
|
130 |
+
result_gallery = gr.Video(
|
131 |
+
label='Generated Video', interactive=False, height=600)
|
132 |
+
|
133 |
+
run_p_button.click(
|
134 |
+
fn=prompt_enc,
|
135 |
+
inputs=[txt2vid_prompt, tar_lang],
|
136 |
+
outputs=[txt2vid_prompt])
|
137 |
+
|
138 |
+
run_t2v_button.click(
|
139 |
+
fn=t2v_generation,
|
140 |
+
inputs=[
|
141 |
+
txt2vid_prompt, resolution, sd_steps, guide_scale, shift_scale,
|
142 |
+
seed, n_prompt
|
143 |
+
],
|
144 |
+
outputs=[result_gallery],
|
145 |
+
)
|
146 |
+
|
147 |
+
return demo
|
148 |
+
|
149 |
+
|
150 |
+
# Main
|
151 |
+
def _parse_args():
|
152 |
+
parser = argparse.ArgumentParser(
|
153 |
+
description="Generate a video from a text prompt or image using Gradio")
|
154 |
+
parser.add_argument(
|
155 |
+
"--ckpt_dir",
|
156 |
+
type=str,
|
157 |
+
default="cache",
|
158 |
+
help="The path to the checkpoint directory.")
|
159 |
+
parser.add_argument(
|
160 |
+
"--prompt_extend_method",
|
161 |
+
type=str,
|
162 |
+
default="local_qwen",
|
163 |
+
choices=["dashscope", "local_qwen"],
|
164 |
+
help="The prompt extend method to use.")
|
165 |
+
parser.add_argument(
|
166 |
+
"--prompt_extend_model",
|
167 |
+
type=str,
|
168 |
+
default=None,
|
169 |
+
help="The prompt extend model to use.")
|
170 |
+
|
171 |
+
args = parser.parse_args()
|
172 |
+
|
173 |
+
return args
|
174 |
+
|
175 |
+
|
176 |
+
if __name__ == '__main__':
|
177 |
+
args = _parse_args()
|
178 |
+
|
179 |
+
print("Step1: Init prompt_expander...", end='', flush=True)
|
180 |
+
if args.prompt_extend_method == "dashscope":
|
181 |
+
prompt_expander = DashScopePromptExpander(
|
182 |
+
model_name=args.prompt_extend_model, is_vl=False)
|
183 |
+
elif args.prompt_extend_method == "local_qwen":
|
184 |
+
prompt_expander = QwenPromptExpander(
|
185 |
+
model_name=args.prompt_extend_model, is_vl=False, device=0)
|
186 |
+
else:
|
187 |
+
raise NotImplementedError(
|
188 |
+
f"Unsupport prompt_extend_method: {args.prompt_extend_method}")
|
189 |
+
print("done", flush=True)
|
190 |
+
|
191 |
+
print("Step2: Init 14B t2v model...", end='', flush=True)
|
192 |
+
cfg = WAN_CONFIGS['t2v-14B']
|
193 |
+
wan_t2v = wan.WanT2V(
|
194 |
+
config=cfg,
|
195 |
+
checkpoint_dir=args.ckpt_dir,
|
196 |
+
device_id=0,
|
197 |
+
rank=0,
|
198 |
+
t5_fsdp=False,
|
199 |
+
dit_fsdp=False,
|
200 |
+
use_usp=False,
|
201 |
+
)
|
202 |
+
print("done", flush=True)
|
203 |
+
|
204 |
+
demo = gradio_interface()
|
205 |
+
demo.launch(server_name="0.0.0.0", share=False, server_port=7860)
|
wan/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from . import configs, distributed, modules
|
2 |
+
from .text2video import WanT2V
|
wan/configs/__init__.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import copy
|
3 |
+
import os
|
4 |
+
|
5 |
+
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
6 |
+
|
7 |
+
from .wan_t2v_14B import t2v_14B
|
8 |
+
|
9 |
+
# the config of t2i_14B is the same as t2v_14B
|
10 |
+
t2i_14B = copy.deepcopy(t2v_14B)
|
11 |
+
t2i_14B.__name__ = 'Config: Wan T2I 14B'
|
12 |
+
|
13 |
+
WAN_CONFIGS = {
|
14 |
+
't2v-14B': t2v_14B,
|
15 |
+
't2i-14B': t2i_14B,
|
16 |
+
}
|
17 |
+
|
18 |
+
SIZE_CONFIGS = {
|
19 |
+
"1920*1056": (1920, 1056),
|
20 |
+
"1920*1072": (1920, 1072),
|
21 |
+
"1920*832": (1920, 832),
|
22 |
+
"1280*560": (1280, 560),
|
23 |
+
"560*1280": (560, 1280),
|
24 |
+
"1056*1920": (1056, 1920),
|
25 |
+
"832*1920": (832, 1920),
|
26 |
+
'720*1280': (720, 1280),
|
27 |
+
'1280*720': (1280, 720),
|
28 |
+
'480*832': (480, 832),
|
29 |
+
'832*480': (832, 480),
|
30 |
+
'1024*1024': (1024, 1024),
|
31 |
+
}
|
32 |
+
|
33 |
+
MAX_AREA_CONFIGS = {
|
34 |
+
'720*1280': 720 * 1280,
|
35 |
+
'1280*720': 1280 * 720,
|
36 |
+
'480*832': 480 * 832,
|
37 |
+
'832*480': 832 * 480,
|
38 |
+
}
|
39 |
+
|
40 |
+
SUPPORTED_SIZES = {
|
41 |
+
't2v-14B': ('720*1280', '1280*720', '480*832', '832*480', "1920*1056", "1056*1920", "1920*832", "832*1920", "1920*1072", "1072*1920", "1280*560", "560*1280"),
|
42 |
+
't2i-14B': tuple(SIZE_CONFIGS.keys()),
|
43 |
+
}
|
wan/configs/shared_config.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from easydict import EasyDict
|
4 |
+
|
5 |
+
#------------------------ Wan shared config ------------------------#
|
6 |
+
wan_shared_cfg = EasyDict()
|
7 |
+
|
8 |
+
# t5
|
9 |
+
wan_shared_cfg.t5_model = 'umt5_xxl'
|
10 |
+
wan_shared_cfg.t5_dtype = torch.bfloat16
|
11 |
+
wan_shared_cfg.text_len = 512
|
12 |
+
|
13 |
+
# transformer
|
14 |
+
wan_shared_cfg.param_dtype = torch.bfloat16
|
15 |
+
|
16 |
+
# inference
|
17 |
+
wan_shared_cfg.num_train_timesteps = 1000
|
18 |
+
wan_shared_cfg.sample_fps = 16
|
19 |
+
wan_shared_cfg.sample_neg_prompt = '色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走'
|
20 |
+
# wan_shared_cfg.sample_neg_prompt = "Vibrant colors, overexposed, static, blurry details, subtitles, stylized, artwork, painting, still image, overall grayish, worst quality, low quality, JPEG compression artifacts, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn face, deformed, disfigured, deformed limbs, merged fingers, motionless frame, cluttered background, three legs, crowded background, walking backwards"
|
wan/configs/wan_t2v_14B.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
from easydict import EasyDict
|
3 |
+
|
4 |
+
from .shared_config import wan_shared_cfg
|
5 |
+
|
6 |
+
#------------------------ Wan T2V 14B ------------------------#
|
7 |
+
|
8 |
+
t2v_14B = EasyDict(__name__='Config: Wan T2V 14B')
|
9 |
+
t2v_14B.update(wan_shared_cfg)
|
10 |
+
|
11 |
+
# t5
|
12 |
+
t2v_14B.t5_checkpoint = 'models_t5_umt5-xxl-enc-bf16.pth'
|
13 |
+
t2v_14B.t5_tokenizer = 'google/umt5-xxl'
|
14 |
+
|
15 |
+
# vae
|
16 |
+
t2v_14B.vae_checkpoint = 'Wan2.1_VAE.pth'
|
17 |
+
t2v_14B.vae_stride = (4, 8, 8)
|
18 |
+
|
19 |
+
# transformer
|
20 |
+
t2v_14B.patch_size = (1, 2, 2)
|
21 |
+
t2v_14B.dim = 5120
|
22 |
+
t2v_14B.ffn_dim = 13824
|
23 |
+
t2v_14B.freq_dim = 256
|
24 |
+
t2v_14B.num_heads = 40
|
25 |
+
t2v_14B.num_layers = 40
|
26 |
+
t2v_14B.window_size = (-1, -1)
|
27 |
+
t2v_14B.qk_norm = True
|
28 |
+
t2v_14B.cross_attn_norm = True
|
29 |
+
t2v_14B.eps = 1e-6
|
wan/distributed/__init__.py
ADDED
File without changes
|
wan/distributed/fsdp.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
from functools import partial
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
6 |
+
from torch.distributed.fsdp import MixedPrecision, ShardingStrategy
|
7 |
+
from torch.distributed.fsdp.wrap import lambda_auto_wrap_policy
|
8 |
+
|
9 |
+
|
10 |
+
def shard_model(
|
11 |
+
model,
|
12 |
+
device_id,
|
13 |
+
param_dtype=torch.bfloat16,
|
14 |
+
reduce_dtype=torch.float32,
|
15 |
+
buffer_dtype=torch.float32,
|
16 |
+
process_group=None,
|
17 |
+
sharding_strategy=ShardingStrategy.FULL_SHARD,
|
18 |
+
sync_module_states=True,
|
19 |
+
):
|
20 |
+
model = FSDP(
|
21 |
+
module=model,
|
22 |
+
process_group=process_group,
|
23 |
+
sharding_strategy=sharding_strategy,
|
24 |
+
auto_wrap_policy=partial(
|
25 |
+
lambda_auto_wrap_policy, lambda_fn=lambda m: m in model.blocks),
|
26 |
+
mixed_precision=MixedPrecision(
|
27 |
+
param_dtype=param_dtype,
|
28 |
+
reduce_dtype=reduce_dtype,
|
29 |
+
buffer_dtype=buffer_dtype),
|
30 |
+
device_id=device_id,
|
31 |
+
sync_module_states=sync_module_states)
|
32 |
+
return model
|
wan/distributed/xdit_context_parallel.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import torch
|
3 |
+
import torch.amp as amp
|
4 |
+
|
5 |
+
from xfuser.core.distributed import get_sequence_parallel_rank, get_sequence_parallel_world_size, get_sp_group
|
6 |
+
from xfuser.core.long_ctx_attention import xFuserLongContextAttention
|
7 |
+
|
8 |
+
from ..modules.model import sinusoidal_embedding_1d
|
9 |
+
|
10 |
+
|
11 |
+
def pad_freqs(original_tensor, target_len):
|
12 |
+
seq_len, s1, s2 = original_tensor.shape
|
13 |
+
pad_size = target_len - seq_len
|
14 |
+
padding_tensor = torch.ones(
|
15 |
+
pad_size,
|
16 |
+
s1,
|
17 |
+
s2,
|
18 |
+
dtype=original_tensor.dtype,
|
19 |
+
device=original_tensor.device)
|
20 |
+
padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0)
|
21 |
+
return padded_tensor
|
22 |
+
|
23 |
+
|
24 |
+
@amp.autocast("cuda", enabled=False)
|
25 |
+
def rope_apply(x, grid_sizes, freqs):
|
26 |
+
"""
|
27 |
+
x: [B, L, N, C].
|
28 |
+
grid_sizes: [B, 3].
|
29 |
+
freqs: [M, C // 2].
|
30 |
+
"""
|
31 |
+
s, n, c = x.size(1), x.size(2), x.size(3) // 2
|
32 |
+
# split freqs
|
33 |
+
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
|
34 |
+
|
35 |
+
# loop over samples
|
36 |
+
output = []
|
37 |
+
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
|
38 |
+
seq_len = f * h * w
|
39 |
+
|
40 |
+
# precompute multipliers
|
41 |
+
x_i = torch.view_as_complex(x[i, :s].to(torch.float64).reshape(
|
42 |
+
s, n, -1, 2))
|
43 |
+
freqs_i = torch.cat([
|
44 |
+
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
|
45 |
+
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
|
46 |
+
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
|
47 |
+
],
|
48 |
+
dim=-1).reshape(seq_len, 1, -1)
|
49 |
+
|
50 |
+
# apply rotary embedding
|
51 |
+
sp_size = get_sequence_parallel_world_size()
|
52 |
+
sp_rank = get_sequence_parallel_rank()
|
53 |
+
freqs_i = pad_freqs(freqs_i, s * sp_size)
|
54 |
+
s_per_rank = s
|
55 |
+
freqs_i_rank = freqs_i[(sp_rank * s_per_rank):((sp_rank + 1) *
|
56 |
+
s_per_rank), :, :]
|
57 |
+
x_i = torch.view_as_real(x_i * freqs_i_rank).flatten(2)
|
58 |
+
x_i = torch.cat([x_i, x[i, s:]])
|
59 |
+
|
60 |
+
# append to collection
|
61 |
+
output.append(x_i)
|
62 |
+
return torch.stack(output).float()
|
63 |
+
|
64 |
+
|
65 |
+
def usp_dit_forward(
|
66 |
+
self,
|
67 |
+
x,
|
68 |
+
t,
|
69 |
+
context,
|
70 |
+
seq_len,
|
71 |
+
clip_fea=None,
|
72 |
+
y=None,
|
73 |
+
guidance=None
|
74 |
+
):
|
75 |
+
"""
|
76 |
+
x: A list of videos each with shape [C, T, H, W].
|
77 |
+
t: [B].
|
78 |
+
context: A list of text embeddings each with shape [L, C].
|
79 |
+
"""
|
80 |
+
if self.model_type == 'i2v':
|
81 |
+
assert clip_fea is not None and y is not None
|
82 |
+
# params
|
83 |
+
device = self.patch_embedding.weight.device
|
84 |
+
if self.freqs.device != device:
|
85 |
+
self.freqs = self.freqs.to(device)
|
86 |
+
|
87 |
+
if y is not None:
|
88 |
+
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
89 |
+
|
90 |
+
# embeddings
|
91 |
+
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
|
92 |
+
grid_sizes = torch.stack(
|
93 |
+
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
|
94 |
+
x = [u.flatten(2).transpose(1, 2) for u in x]
|
95 |
+
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
|
96 |
+
assert seq_lens.max() <= seq_len
|
97 |
+
x = torch.cat([
|
98 |
+
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1)
|
99 |
+
for u in x
|
100 |
+
])
|
101 |
+
|
102 |
+
# time embeddings
|
103 |
+
with amp.autocast("cuda", dtype=torch.float32):
|
104 |
+
e = self.time_embedding(
|
105 |
+
sinusoidal_embedding_1d(self.freq_dim, t).float())
|
106 |
+
|
107 |
+
if guidance is not None and self.guidance_embedding is not None:
|
108 |
+
guidance_input = sinusoidal_embedding_1d(self.freq_dim, guidance).float()
|
109 |
+
guidance_emb = self.guidance_embedding(guidance_input)
|
110 |
+
e = e + guidance_emb
|
111 |
+
|
112 |
+
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
113 |
+
assert e.dtype == torch.float32 and e0.dtype == torch.float32
|
114 |
+
|
115 |
+
# context
|
116 |
+
context_lens = None
|
117 |
+
context = self.text_embedding(
|
118 |
+
torch.stack([
|
119 |
+
torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
|
120 |
+
for u in context
|
121 |
+
]))
|
122 |
+
|
123 |
+
if clip_fea is not None:
|
124 |
+
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
125 |
+
context = torch.concat([context_clip, context], dim=1)
|
126 |
+
|
127 |
+
# arguments
|
128 |
+
kwargs = dict(
|
129 |
+
e=e0,
|
130 |
+
seq_lens=seq_lens,
|
131 |
+
grid_sizes=grid_sizes,
|
132 |
+
freqs=self.freqs,
|
133 |
+
context=context,
|
134 |
+
context_lens=context_lens)
|
135 |
+
|
136 |
+
# Context Parallel
|
137 |
+
x = torch.chunk(
|
138 |
+
x, get_sequence_parallel_world_size(),
|
139 |
+
dim=1)[get_sequence_parallel_rank()]
|
140 |
+
|
141 |
+
for block in self.blocks:
|
142 |
+
x = block(x, **kwargs)
|
143 |
+
|
144 |
+
# head
|
145 |
+
x = self.head(x, e)
|
146 |
+
|
147 |
+
# Context Parallel
|
148 |
+
x = get_sp_group().all_gather(x, dim=1)
|
149 |
+
|
150 |
+
# unpatchify
|
151 |
+
x = self.unpatchify(x, grid_sizes)
|
152 |
+
return [u.float() for u in x]
|
153 |
+
|
154 |
+
|
155 |
+
def usp_attn_forward(self,
|
156 |
+
x,
|
157 |
+
seq_lens,
|
158 |
+
grid_sizes,
|
159 |
+
freqs,
|
160 |
+
dtype=torch.bfloat16):
|
161 |
+
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
|
162 |
+
half_dtypes = (torch.float16, torch.bfloat16)
|
163 |
+
|
164 |
+
def half(x):
|
165 |
+
return x if x.dtype in half_dtypes else x.to(dtype)
|
166 |
+
|
167 |
+
# query, key, value function
|
168 |
+
def qkv_fn(x):
|
169 |
+
q = self.norm_q(self.q(x)).view(b, s, n, d)
|
170 |
+
k = self.norm_k(self.k(x)).view(b, s, n, d)
|
171 |
+
v = self.v(x).view(b, s, n, d)
|
172 |
+
return q, k, v
|
173 |
+
|
174 |
+
q, k, v = qkv_fn(x)
|
175 |
+
q = rope_apply(q, grid_sizes, freqs)
|
176 |
+
k = rope_apply(k, grid_sizes, freqs)
|
177 |
+
|
178 |
+
# TODO: We should use unpaded q,k,v for attention.
|
179 |
+
# k_lens = seq_lens // get_sequence_parallel_world_size()
|
180 |
+
# if k_lens is not None:
|
181 |
+
# q = torch.cat([u[:l] for u, l in zip(q, k_lens)]).unsqueeze(0)
|
182 |
+
# k = torch.cat([u[:l] for u, l in zip(k, k_lens)]).unsqueeze(0)
|
183 |
+
# v = torch.cat([u[:l] for u, l in zip(v, k_lens)]).unsqueeze(0)
|
184 |
+
|
185 |
+
x = xFuserLongContextAttention()(
|
186 |
+
None,
|
187 |
+
query=half(q),
|
188 |
+
key=half(k),
|
189 |
+
value=half(v),
|
190 |
+
window_size=self.window_size)
|
191 |
+
|
192 |
+
# TODO: padding after attention.
|
193 |
+
# x = torch.cat([x, x.new_zeros(b, s - x.size(1), n, d)], dim=1)
|
194 |
+
|
195 |
+
# output
|
196 |
+
x = x.flatten(2)
|
197 |
+
x = self.o(x)
|
198 |
+
return x
|
wan/distributed/xdit_context_parallel_bk.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import torch
|
3 |
+
import torch.cuda.amp as amp
|
4 |
+
from xfuser.core.distributed import (get_sequence_parallel_rank,
|
5 |
+
get_sequence_parallel_world_size,
|
6 |
+
get_sp_group)
|
7 |
+
from xfuser.core.long_ctx_attention import xFuserLongContextAttention
|
8 |
+
|
9 |
+
from ..modules.model import sinusoidal_embedding_1d
|
10 |
+
|
11 |
+
|
12 |
+
def pad_freqs(original_tensor, target_len):
|
13 |
+
seq_len, s1, s2 = original_tensor.shape
|
14 |
+
pad_size = target_len - seq_len
|
15 |
+
padding_tensor = torch.ones(
|
16 |
+
pad_size,
|
17 |
+
s1,
|
18 |
+
s2,
|
19 |
+
dtype=original_tensor.dtype,
|
20 |
+
device=original_tensor.device)
|
21 |
+
padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0)
|
22 |
+
return padded_tensor
|
23 |
+
|
24 |
+
|
25 |
+
@amp.autocast(enabled=False)
|
26 |
+
def rope_apply(x, grid_sizes, freqs):
|
27 |
+
"""
|
28 |
+
x: [B, L, N, C].
|
29 |
+
grid_sizes: [B, 3].
|
30 |
+
freqs: [M, C // 2].
|
31 |
+
"""
|
32 |
+
s, n, c = x.size(1), x.size(2), x.size(3) // 2
|
33 |
+
# split freqs
|
34 |
+
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
|
35 |
+
|
36 |
+
# loop over samples
|
37 |
+
output = []
|
38 |
+
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
|
39 |
+
seq_len = f * h * w
|
40 |
+
|
41 |
+
# precompute multipliers
|
42 |
+
x_i = torch.view_as_complex(x[i, :s].to(torch.float64).reshape(
|
43 |
+
s, n, -1, 2))
|
44 |
+
freqs_i = torch.cat([
|
45 |
+
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
|
46 |
+
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
|
47 |
+
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
|
48 |
+
],
|
49 |
+
dim=-1).reshape(seq_len, 1, -1)
|
50 |
+
|
51 |
+
# apply rotary embedding
|
52 |
+
sp_size = get_sequence_parallel_world_size()
|
53 |
+
sp_rank = get_sequence_parallel_rank()
|
54 |
+
freqs_i = pad_freqs(freqs_i, s * sp_size)
|
55 |
+
s_per_rank = s
|
56 |
+
freqs_i_rank = freqs_i[(sp_rank * s_per_rank):((sp_rank + 1) *
|
57 |
+
s_per_rank), :, :]
|
58 |
+
x_i = torch.view_as_real(x_i * freqs_i_rank).flatten(2)
|
59 |
+
x_i = torch.cat([x_i, x[i, s:]])
|
60 |
+
|
61 |
+
# append to collection
|
62 |
+
output.append(x_i)
|
63 |
+
return torch.stack(output).float()
|
64 |
+
|
65 |
+
|
66 |
+
def usp_dit_forward(
|
67 |
+
self,
|
68 |
+
x,
|
69 |
+
t,
|
70 |
+
context,
|
71 |
+
seq_len,
|
72 |
+
clip_fea=None,
|
73 |
+
y=None,
|
74 |
+
):
|
75 |
+
"""
|
76 |
+
x: A list of videos each with shape [C, T, H, W].
|
77 |
+
t: [B].
|
78 |
+
context: A list of text embeddings each with shape [L, C].
|
79 |
+
"""
|
80 |
+
if self.model_type == 'i2v':
|
81 |
+
assert clip_fea is not None and y is not None
|
82 |
+
# params
|
83 |
+
device = self.patch_embedding.weight.device
|
84 |
+
if self.freqs.device != device:
|
85 |
+
self.freqs = self.freqs.to(device)
|
86 |
+
|
87 |
+
if y is not None:
|
88 |
+
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
89 |
+
|
90 |
+
# embeddings
|
91 |
+
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
|
92 |
+
grid_sizes = torch.stack(
|
93 |
+
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
|
94 |
+
x = [u.flatten(2).transpose(1, 2) for u in x]
|
95 |
+
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
|
96 |
+
assert seq_lens.max() <= seq_len
|
97 |
+
x = torch.cat([
|
98 |
+
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1)
|
99 |
+
for u in x
|
100 |
+
])
|
101 |
+
|
102 |
+
# time embeddings
|
103 |
+
with amp.autocast(dtype=torch.float32):
|
104 |
+
e = self.time_embedding(
|
105 |
+
sinusoidal_embedding_1d(self.freq_dim, t).float())
|
106 |
+
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
107 |
+
assert e.dtype == torch.float32 and e0.dtype == torch.float32
|
108 |
+
|
109 |
+
# context
|
110 |
+
context_lens = None
|
111 |
+
context = self.text_embedding(
|
112 |
+
torch.stack([
|
113 |
+
torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
|
114 |
+
for u in context
|
115 |
+
]))
|
116 |
+
|
117 |
+
if clip_fea is not None:
|
118 |
+
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
119 |
+
context = torch.concat([context_clip, context], dim=1)
|
120 |
+
|
121 |
+
# arguments
|
122 |
+
kwargs = dict(
|
123 |
+
e=e0,
|
124 |
+
seq_lens=seq_lens,
|
125 |
+
grid_sizes=grid_sizes,
|
126 |
+
freqs=self.freqs,
|
127 |
+
context=context,
|
128 |
+
context_lens=context_lens)
|
129 |
+
|
130 |
+
# Context Parallel
|
131 |
+
x = torch.chunk(
|
132 |
+
x, get_sequence_parallel_world_size(),
|
133 |
+
dim=1)[get_sequence_parallel_rank()]
|
134 |
+
|
135 |
+
for block in self.blocks:
|
136 |
+
x = block(x, **kwargs)
|
137 |
+
|
138 |
+
# head
|
139 |
+
x = self.head(x, e)
|
140 |
+
|
141 |
+
# Context Parallel
|
142 |
+
x = get_sp_group().all_gather(x, dim=1)
|
143 |
+
|
144 |
+
# unpatchify
|
145 |
+
x = self.unpatchify(x, grid_sizes)
|
146 |
+
return [u.float() for u in x]
|
147 |
+
|
148 |
+
|
149 |
+
def usp_attn_forward(self,
|
150 |
+
x,
|
151 |
+
seq_lens,
|
152 |
+
grid_sizes,
|
153 |
+
freqs,
|
154 |
+
dtype=torch.bfloat16):
|
155 |
+
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
|
156 |
+
half_dtypes = (torch.float16, torch.bfloat16)
|
157 |
+
|
158 |
+
def half(x):
|
159 |
+
return x if x.dtype in half_dtypes else x.to(dtype)
|
160 |
+
|
161 |
+
# query, key, value function
|
162 |
+
def qkv_fn(x):
|
163 |
+
q = self.norm_q(self.q(x)).view(b, s, n, d)
|
164 |
+
k = self.norm_k(self.k(x)).view(b, s, n, d)
|
165 |
+
v = self.v(x).view(b, s, n, d)
|
166 |
+
return q, k, v
|
167 |
+
|
168 |
+
q, k, v = qkv_fn(x)
|
169 |
+
q = rope_apply(q, grid_sizes, freqs)
|
170 |
+
k = rope_apply(k, grid_sizes, freqs)
|
171 |
+
|
172 |
+
# TODO: We should use unpaded q,k,v for attention.
|
173 |
+
# k_lens = seq_lens // get_sequence_parallel_world_size()
|
174 |
+
# if k_lens is not None:
|
175 |
+
# q = torch.cat([u[:l] for u, l in zip(q, k_lens)]).unsqueeze(0)
|
176 |
+
# k = torch.cat([u[:l] for u, l in zip(k, k_lens)]).unsqueeze(0)
|
177 |
+
# v = torch.cat([u[:l] for u, l in zip(v, k_lens)]).unsqueeze(0)
|
178 |
+
|
179 |
+
x = xFuserLongContextAttention()(
|
180 |
+
None,
|
181 |
+
query=half(q),
|
182 |
+
key=half(k),
|
183 |
+
value=half(v),
|
184 |
+
window_size=self.window_size)
|
185 |
+
|
186 |
+
# TODO: padding after attention.
|
187 |
+
# x = torch.cat([x, x.new_zeros(b, s - x.size(1), n, d)], dim=1)
|
188 |
+
|
189 |
+
# output
|
190 |
+
x = x.flatten(2)
|
191 |
+
x = self.o(x)
|
192 |
+
return x
|
wan/modules/__init__.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .attention import flash_attention
|
2 |
+
from .model import WanModel
|
3 |
+
from .t5 import T5Decoder, T5Encoder, T5EncoderModel, T5Model
|
4 |
+
from .tokenizers import HuggingfaceTokenizer
|
5 |
+
from .vae import WanVAE
|
6 |
+
|
7 |
+
__all__ = [
|
8 |
+
'WanVAE',
|
9 |
+
'WanModel',
|
10 |
+
'T5Model',
|
11 |
+
'T5Encoder',
|
12 |
+
'T5Decoder',
|
13 |
+
'T5EncoderModel',
|
14 |
+
'HuggingfaceTokenizer',
|
15 |
+
'flash_attention',
|
16 |
+
]
|
wan/modules/attention.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import torch
|
3 |
+
|
4 |
+
try:
|
5 |
+
import flash_attn_interface
|
6 |
+
FLASH_ATTN_3_AVAILABLE = True
|
7 |
+
except ModuleNotFoundError:
|
8 |
+
FLASH_ATTN_3_AVAILABLE = False
|
9 |
+
|
10 |
+
try:
|
11 |
+
import flash_attn
|
12 |
+
FLASH_ATTN_2_AVAILABLE = True
|
13 |
+
except ModuleNotFoundError:
|
14 |
+
FLASH_ATTN_2_AVAILABLE = False
|
15 |
+
|
16 |
+
import warnings
|
17 |
+
|
18 |
+
__all__ = [
|
19 |
+
'flash_attention',
|
20 |
+
'attention',
|
21 |
+
]
|
22 |
+
|
23 |
+
|
24 |
+
def flash_attention(
|
25 |
+
q,
|
26 |
+
k,
|
27 |
+
v,
|
28 |
+
q_lens=None,
|
29 |
+
k_lens=None,
|
30 |
+
dropout_p=0.,
|
31 |
+
softmax_scale=None,
|
32 |
+
q_scale=None,
|
33 |
+
causal=False,
|
34 |
+
window_size=(-1, -1),
|
35 |
+
deterministic=False,
|
36 |
+
dtype=torch.bfloat16,
|
37 |
+
version=None,
|
38 |
+
):
|
39 |
+
"""
|
40 |
+
q: [B, Lq, Nq, C1].
|
41 |
+
k: [B, Lk, Nk, C1].
|
42 |
+
v: [B, Lk, Nk, C2]. Nq must be divisible by Nk.
|
43 |
+
q_lens: [B].
|
44 |
+
k_lens: [B].
|
45 |
+
dropout_p: float. Dropout probability.
|
46 |
+
softmax_scale: float. The scaling of QK^T before applying softmax.
|
47 |
+
causal: bool. Whether to apply causal attention mask.
|
48 |
+
window_size: (left right). If not (-1, -1), apply sliding window local attention.
|
49 |
+
deterministic: bool. If True, slightly slower and uses more memory.
|
50 |
+
dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16.
|
51 |
+
"""
|
52 |
+
half_dtypes = (torch.float16, torch.bfloat16)
|
53 |
+
assert dtype in half_dtypes
|
54 |
+
assert q.device.type == 'cuda' and q.size(-1) <= 256
|
55 |
+
|
56 |
+
# params
|
57 |
+
b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype
|
58 |
+
|
59 |
+
def half(x):
|
60 |
+
return x if x.dtype in half_dtypes else x.to(dtype)
|
61 |
+
|
62 |
+
# preprocess query
|
63 |
+
if q_lens is None:
|
64 |
+
q = half(q.flatten(0, 1))
|
65 |
+
q_lens = torch.tensor(
|
66 |
+
[lq] * b, dtype=torch.int32).to(
|
67 |
+
device=q.device, non_blocking=True)
|
68 |
+
else:
|
69 |
+
q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)]))
|
70 |
+
|
71 |
+
# preprocess key, value
|
72 |
+
if k_lens is None:
|
73 |
+
k = half(k.flatten(0, 1))
|
74 |
+
v = half(v.flatten(0, 1))
|
75 |
+
k_lens = torch.tensor(
|
76 |
+
[lk] * b, dtype=torch.int32).to(
|
77 |
+
device=k.device, non_blocking=True)
|
78 |
+
else:
|
79 |
+
k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)]))
|
80 |
+
v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)]))
|
81 |
+
|
82 |
+
q = q.to(v.dtype)
|
83 |
+
k = k.to(v.dtype)
|
84 |
+
|
85 |
+
if q_scale is not None:
|
86 |
+
q = q * q_scale
|
87 |
+
|
88 |
+
if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE:
|
89 |
+
warnings.warn(
|
90 |
+
'Flash attention 3 is not available, use flash attention 2 instead.'
|
91 |
+
)
|
92 |
+
|
93 |
+
# apply attention
|
94 |
+
if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE:
|
95 |
+
# Note: dropout_p, window_size are not supported in FA3 now.
|
96 |
+
x = flash_attn_interface.flash_attn_varlen_func(
|
97 |
+
q=q,
|
98 |
+
k=k,
|
99 |
+
v=v,
|
100 |
+
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
|
101 |
+
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
102 |
+
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
|
103 |
+
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
104 |
+
seqused_q=None,
|
105 |
+
seqused_k=None,
|
106 |
+
max_seqlen_q=lq,
|
107 |
+
max_seqlen_k=lk,
|
108 |
+
softmax_scale=softmax_scale,
|
109 |
+
causal=causal,
|
110 |
+
deterministic=deterministic)[0].unflatten(0, (b, lq))
|
111 |
+
else:
|
112 |
+
assert FLASH_ATTN_2_AVAILABLE
|
113 |
+
x = flash_attn.flash_attn_varlen_func(
|
114 |
+
q=q,
|
115 |
+
k=k,
|
116 |
+
v=v,
|
117 |
+
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
|
118 |
+
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
119 |
+
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
|
120 |
+
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
121 |
+
max_seqlen_q=lq,
|
122 |
+
max_seqlen_k=lk,
|
123 |
+
dropout_p=dropout_p,
|
124 |
+
softmax_scale=softmax_scale,
|
125 |
+
causal=causal,
|
126 |
+
window_size=window_size,
|
127 |
+
deterministic=deterministic).unflatten(0, (b, lq))
|
128 |
+
|
129 |
+
# output
|
130 |
+
return x.type(out_dtype)
|
131 |
+
|
132 |
+
|
133 |
+
def attention(
|
134 |
+
q,
|
135 |
+
k,
|
136 |
+
v,
|
137 |
+
q_lens=None,
|
138 |
+
k_lens=None,
|
139 |
+
dropout_p=0.,
|
140 |
+
softmax_scale=None,
|
141 |
+
q_scale=None,
|
142 |
+
causal=False,
|
143 |
+
window_size=(-1, -1),
|
144 |
+
deterministic=False,
|
145 |
+
dtype=torch.bfloat16,
|
146 |
+
fa_version=None,
|
147 |
+
):
|
148 |
+
if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE:
|
149 |
+
return flash_attention(
|
150 |
+
q=q,
|
151 |
+
k=k,
|
152 |
+
v=v,
|
153 |
+
q_lens=q_lens,
|
154 |
+
k_lens=k_lens,
|
155 |
+
dropout_p=dropout_p,
|
156 |
+
softmax_scale=softmax_scale,
|
157 |
+
q_scale=q_scale,
|
158 |
+
causal=causal,
|
159 |
+
window_size=window_size,
|
160 |
+
deterministic=deterministic,
|
161 |
+
dtype=dtype,
|
162 |
+
version=fa_version,
|
163 |
+
)
|
164 |
+
else:
|
165 |
+
if q_lens is not None or k_lens is not None:
|
166 |
+
warnings.warn(
|
167 |
+
'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.'
|
168 |
+
)
|
169 |
+
attn_mask = None
|
170 |
+
|
171 |
+
q = q.transpose(1, 2).to(dtype)
|
172 |
+
k = k.transpose(1, 2).to(dtype)
|
173 |
+
v = v.transpose(1, 2).to(dtype)
|
174 |
+
|
175 |
+
out = torch.nn.functional.scaled_dot_product_attention(
|
176 |
+
q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p)
|
177 |
+
|
178 |
+
out = out.transpose(1, 2).contiguous()
|
179 |
+
return out
|
wan/modules/clip.py
ADDED
@@ -0,0 +1,542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from ``https://github.com/openai/CLIP'' and ``https://github.com/mlfoundations/open_clip''
|
2 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
3 |
+
import logging
|
4 |
+
import math
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import torchvision.transforms as T
|
10 |
+
|
11 |
+
from .attention import flash_attention
|
12 |
+
from .tokenizers import HuggingfaceTokenizer
|
13 |
+
from .xlm_roberta import XLMRoberta
|
14 |
+
|
15 |
+
__all__ = [
|
16 |
+
'XLMRobertaCLIP',
|
17 |
+
'clip_xlm_roberta_vit_h_14',
|
18 |
+
'CLIPModel',
|
19 |
+
]
|
20 |
+
|
21 |
+
|
22 |
+
def pos_interpolate(pos, seq_len):
|
23 |
+
if pos.size(1) == seq_len:
|
24 |
+
return pos
|
25 |
+
else:
|
26 |
+
src_grid = int(math.sqrt(pos.size(1)))
|
27 |
+
tar_grid = int(math.sqrt(seq_len))
|
28 |
+
n = pos.size(1) - src_grid * src_grid
|
29 |
+
return torch.cat([
|
30 |
+
pos[:, :n],
|
31 |
+
F.interpolate(
|
32 |
+
pos[:, n:].float().reshape(1, src_grid, src_grid, -1).permute(
|
33 |
+
0, 3, 1, 2),
|
34 |
+
size=(tar_grid, tar_grid),
|
35 |
+
mode='bicubic',
|
36 |
+
align_corners=False).flatten(2).transpose(1, 2)
|
37 |
+
],
|
38 |
+
dim=1)
|
39 |
+
|
40 |
+
|
41 |
+
class QuickGELU(nn.Module):
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
return x * torch.sigmoid(1.702 * x)
|
45 |
+
|
46 |
+
|
47 |
+
class LayerNorm(nn.LayerNorm):
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
return super().forward(x.float()).type_as(x)
|
51 |
+
|
52 |
+
|
53 |
+
class SelfAttention(nn.Module):
|
54 |
+
|
55 |
+
def __init__(self,
|
56 |
+
dim,
|
57 |
+
num_heads,
|
58 |
+
causal=False,
|
59 |
+
attn_dropout=0.0,
|
60 |
+
proj_dropout=0.0):
|
61 |
+
assert dim % num_heads == 0
|
62 |
+
super().__init__()
|
63 |
+
self.dim = dim
|
64 |
+
self.num_heads = num_heads
|
65 |
+
self.head_dim = dim // num_heads
|
66 |
+
self.causal = causal
|
67 |
+
self.attn_dropout = attn_dropout
|
68 |
+
self.proj_dropout = proj_dropout
|
69 |
+
|
70 |
+
# layers
|
71 |
+
self.to_qkv = nn.Linear(dim, dim * 3)
|
72 |
+
self.proj = nn.Linear(dim, dim)
|
73 |
+
|
74 |
+
def forward(self, x):
|
75 |
+
"""
|
76 |
+
x: [B, L, C].
|
77 |
+
"""
|
78 |
+
b, s, c, n, d = *x.size(), self.num_heads, self.head_dim
|
79 |
+
|
80 |
+
# compute query, key, value
|
81 |
+
q, k, v = self.to_qkv(x).view(b, s, 3, n, d).unbind(2)
|
82 |
+
|
83 |
+
# compute attention
|
84 |
+
p = self.attn_dropout if self.training else 0.0
|
85 |
+
x = flash_attention(q, k, v, dropout_p=p, causal=self.causal, version=2)
|
86 |
+
x = x.reshape(b, s, c)
|
87 |
+
|
88 |
+
# output
|
89 |
+
x = self.proj(x)
|
90 |
+
x = F.dropout(x, self.proj_dropout, self.training)
|
91 |
+
return x
|
92 |
+
|
93 |
+
|
94 |
+
class SwiGLU(nn.Module):
|
95 |
+
|
96 |
+
def __init__(self, dim, mid_dim):
|
97 |
+
super().__init__()
|
98 |
+
self.dim = dim
|
99 |
+
self.mid_dim = mid_dim
|
100 |
+
|
101 |
+
# layers
|
102 |
+
self.fc1 = nn.Linear(dim, mid_dim)
|
103 |
+
self.fc2 = nn.Linear(dim, mid_dim)
|
104 |
+
self.fc3 = nn.Linear(mid_dim, dim)
|
105 |
+
|
106 |
+
def forward(self, x):
|
107 |
+
x = F.silu(self.fc1(x)) * self.fc2(x)
|
108 |
+
x = self.fc3(x)
|
109 |
+
return x
|
110 |
+
|
111 |
+
|
112 |
+
class AttentionBlock(nn.Module):
|
113 |
+
|
114 |
+
def __init__(self,
|
115 |
+
dim,
|
116 |
+
mlp_ratio,
|
117 |
+
num_heads,
|
118 |
+
post_norm=False,
|
119 |
+
causal=False,
|
120 |
+
activation='quick_gelu',
|
121 |
+
attn_dropout=0.0,
|
122 |
+
proj_dropout=0.0,
|
123 |
+
norm_eps=1e-5):
|
124 |
+
assert activation in ['quick_gelu', 'gelu', 'swi_glu']
|
125 |
+
super().__init__()
|
126 |
+
self.dim = dim
|
127 |
+
self.mlp_ratio = mlp_ratio
|
128 |
+
self.num_heads = num_heads
|
129 |
+
self.post_norm = post_norm
|
130 |
+
self.causal = causal
|
131 |
+
self.norm_eps = norm_eps
|
132 |
+
|
133 |
+
# layers
|
134 |
+
self.norm1 = LayerNorm(dim, eps=norm_eps)
|
135 |
+
self.attn = SelfAttention(dim, num_heads, causal, attn_dropout,
|
136 |
+
proj_dropout)
|
137 |
+
self.norm2 = LayerNorm(dim, eps=norm_eps)
|
138 |
+
if activation == 'swi_glu':
|
139 |
+
self.mlp = SwiGLU(dim, int(dim * mlp_ratio))
|
140 |
+
else:
|
141 |
+
self.mlp = nn.Sequential(
|
142 |
+
nn.Linear(dim, int(dim * mlp_ratio)),
|
143 |
+
QuickGELU() if activation == 'quick_gelu' else nn.GELU(),
|
144 |
+
nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout))
|
145 |
+
|
146 |
+
def forward(self, x):
|
147 |
+
if self.post_norm:
|
148 |
+
x = x + self.norm1(self.attn(x))
|
149 |
+
x = x + self.norm2(self.mlp(x))
|
150 |
+
else:
|
151 |
+
x = x + self.attn(self.norm1(x))
|
152 |
+
x = x + self.mlp(self.norm2(x))
|
153 |
+
return x
|
154 |
+
|
155 |
+
|
156 |
+
class AttentionPool(nn.Module):
|
157 |
+
|
158 |
+
def __init__(self,
|
159 |
+
dim,
|
160 |
+
mlp_ratio,
|
161 |
+
num_heads,
|
162 |
+
activation='gelu',
|
163 |
+
proj_dropout=0.0,
|
164 |
+
norm_eps=1e-5):
|
165 |
+
assert dim % num_heads == 0
|
166 |
+
super().__init__()
|
167 |
+
self.dim = dim
|
168 |
+
self.mlp_ratio = mlp_ratio
|
169 |
+
self.num_heads = num_heads
|
170 |
+
self.head_dim = dim // num_heads
|
171 |
+
self.proj_dropout = proj_dropout
|
172 |
+
self.norm_eps = norm_eps
|
173 |
+
|
174 |
+
# layers
|
175 |
+
gain = 1.0 / math.sqrt(dim)
|
176 |
+
self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim))
|
177 |
+
self.to_q = nn.Linear(dim, dim)
|
178 |
+
self.to_kv = nn.Linear(dim, dim * 2)
|
179 |
+
self.proj = nn.Linear(dim, dim)
|
180 |
+
self.norm = LayerNorm(dim, eps=norm_eps)
|
181 |
+
self.mlp = nn.Sequential(
|
182 |
+
nn.Linear(dim, int(dim * mlp_ratio)),
|
183 |
+
QuickGELU() if activation == 'quick_gelu' else nn.GELU(),
|
184 |
+
nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout))
|
185 |
+
|
186 |
+
def forward(self, x):
|
187 |
+
"""
|
188 |
+
x: [B, L, C].
|
189 |
+
"""
|
190 |
+
b, s, c, n, d = *x.size(), self.num_heads, self.head_dim
|
191 |
+
|
192 |
+
# compute query, key, value
|
193 |
+
q = self.to_q(self.cls_embedding).view(1, 1, n, d).expand(b, -1, -1, -1)
|
194 |
+
k, v = self.to_kv(x).view(b, s, 2, n, d).unbind(2)
|
195 |
+
|
196 |
+
# compute attention
|
197 |
+
x = flash_attention(q, k, v, version=2)
|
198 |
+
x = x.reshape(b, 1, c)
|
199 |
+
|
200 |
+
# output
|
201 |
+
x = self.proj(x)
|
202 |
+
x = F.dropout(x, self.proj_dropout, self.training)
|
203 |
+
|
204 |
+
# mlp
|
205 |
+
x = x + self.mlp(self.norm(x))
|
206 |
+
return x[:, 0]
|
207 |
+
|
208 |
+
|
209 |
+
class VisionTransformer(nn.Module):
|
210 |
+
|
211 |
+
def __init__(self,
|
212 |
+
image_size=224,
|
213 |
+
patch_size=16,
|
214 |
+
dim=768,
|
215 |
+
mlp_ratio=4,
|
216 |
+
out_dim=512,
|
217 |
+
num_heads=12,
|
218 |
+
num_layers=12,
|
219 |
+
pool_type='token',
|
220 |
+
pre_norm=True,
|
221 |
+
post_norm=False,
|
222 |
+
activation='quick_gelu',
|
223 |
+
attn_dropout=0.0,
|
224 |
+
proj_dropout=0.0,
|
225 |
+
embedding_dropout=0.0,
|
226 |
+
norm_eps=1e-5):
|
227 |
+
if image_size % patch_size != 0:
|
228 |
+
print(
|
229 |
+
'[WARNING] image_size is not divisible by patch_size',
|
230 |
+
flush=True)
|
231 |
+
assert pool_type in ('token', 'token_fc', 'attn_pool')
|
232 |
+
out_dim = out_dim or dim
|
233 |
+
super().__init__()
|
234 |
+
self.image_size = image_size
|
235 |
+
self.patch_size = patch_size
|
236 |
+
self.num_patches = (image_size // patch_size)**2
|
237 |
+
self.dim = dim
|
238 |
+
self.mlp_ratio = mlp_ratio
|
239 |
+
self.out_dim = out_dim
|
240 |
+
self.num_heads = num_heads
|
241 |
+
self.num_layers = num_layers
|
242 |
+
self.pool_type = pool_type
|
243 |
+
self.post_norm = post_norm
|
244 |
+
self.norm_eps = norm_eps
|
245 |
+
|
246 |
+
# embeddings
|
247 |
+
gain = 1.0 / math.sqrt(dim)
|
248 |
+
self.patch_embedding = nn.Conv2d(
|
249 |
+
3,
|
250 |
+
dim,
|
251 |
+
kernel_size=patch_size,
|
252 |
+
stride=patch_size,
|
253 |
+
bias=not pre_norm)
|
254 |
+
if pool_type in ('token', 'token_fc'):
|
255 |
+
self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim))
|
256 |
+
self.pos_embedding = nn.Parameter(gain * torch.randn(
|
257 |
+
1, self.num_patches +
|
258 |
+
(1 if pool_type in ('token', 'token_fc') else 0), dim))
|
259 |
+
self.dropout = nn.Dropout(embedding_dropout)
|
260 |
+
|
261 |
+
# transformer
|
262 |
+
self.pre_norm = LayerNorm(dim, eps=norm_eps) if pre_norm else None
|
263 |
+
self.transformer = nn.Sequential(*[
|
264 |
+
AttentionBlock(dim, mlp_ratio, num_heads, post_norm, False,
|
265 |
+
activation, attn_dropout, proj_dropout, norm_eps)
|
266 |
+
for _ in range(num_layers)
|
267 |
+
])
|
268 |
+
self.post_norm = LayerNorm(dim, eps=norm_eps)
|
269 |
+
|
270 |
+
# head
|
271 |
+
if pool_type == 'token':
|
272 |
+
self.head = nn.Parameter(gain * torch.randn(dim, out_dim))
|
273 |
+
elif pool_type == 'token_fc':
|
274 |
+
self.head = nn.Linear(dim, out_dim)
|
275 |
+
elif pool_type == 'attn_pool':
|
276 |
+
self.head = AttentionPool(dim, mlp_ratio, num_heads, activation,
|
277 |
+
proj_dropout, norm_eps)
|
278 |
+
|
279 |
+
def forward(self, x, interpolation=False, use_31_block=False):
|
280 |
+
b = x.size(0)
|
281 |
+
|
282 |
+
# embeddings
|
283 |
+
x = self.patch_embedding(x).flatten(2).permute(0, 2, 1)
|
284 |
+
if self.pool_type in ('token', 'token_fc'):
|
285 |
+
x = torch.cat([self.cls_embedding.expand(b, -1, -1), x], dim=1)
|
286 |
+
if interpolation:
|
287 |
+
e = pos_interpolate(self.pos_embedding, x.size(1))
|
288 |
+
else:
|
289 |
+
e = self.pos_embedding
|
290 |
+
x = self.dropout(x + e)
|
291 |
+
if self.pre_norm is not None:
|
292 |
+
x = self.pre_norm(x)
|
293 |
+
|
294 |
+
# transformer
|
295 |
+
if use_31_block:
|
296 |
+
x = self.transformer[:-1](x)
|
297 |
+
return x
|
298 |
+
else:
|
299 |
+
x = self.transformer(x)
|
300 |
+
return x
|
301 |
+
|
302 |
+
|
303 |
+
class XLMRobertaWithHead(XLMRoberta):
|
304 |
+
|
305 |
+
def __init__(self, **kwargs):
|
306 |
+
self.out_dim = kwargs.pop('out_dim')
|
307 |
+
super().__init__(**kwargs)
|
308 |
+
|
309 |
+
# head
|
310 |
+
mid_dim = (self.dim + self.out_dim) // 2
|
311 |
+
self.head = nn.Sequential(
|
312 |
+
nn.Linear(self.dim, mid_dim, bias=False), nn.GELU(),
|
313 |
+
nn.Linear(mid_dim, self.out_dim, bias=False))
|
314 |
+
|
315 |
+
def forward(self, ids):
|
316 |
+
# xlm-roberta
|
317 |
+
x = super().forward(ids)
|
318 |
+
|
319 |
+
# average pooling
|
320 |
+
mask = ids.ne(self.pad_id).unsqueeze(-1).to(x)
|
321 |
+
x = (x * mask).sum(dim=1) / mask.sum(dim=1)
|
322 |
+
|
323 |
+
# head
|
324 |
+
x = self.head(x)
|
325 |
+
return x
|
326 |
+
|
327 |
+
|
328 |
+
class XLMRobertaCLIP(nn.Module):
|
329 |
+
|
330 |
+
def __init__(self,
|
331 |
+
embed_dim=1024,
|
332 |
+
image_size=224,
|
333 |
+
patch_size=14,
|
334 |
+
vision_dim=1280,
|
335 |
+
vision_mlp_ratio=4,
|
336 |
+
vision_heads=16,
|
337 |
+
vision_layers=32,
|
338 |
+
vision_pool='token',
|
339 |
+
vision_pre_norm=True,
|
340 |
+
vision_post_norm=False,
|
341 |
+
activation='gelu',
|
342 |
+
vocab_size=250002,
|
343 |
+
max_text_len=514,
|
344 |
+
type_size=1,
|
345 |
+
pad_id=1,
|
346 |
+
text_dim=1024,
|
347 |
+
text_heads=16,
|
348 |
+
text_layers=24,
|
349 |
+
text_post_norm=True,
|
350 |
+
text_dropout=0.1,
|
351 |
+
attn_dropout=0.0,
|
352 |
+
proj_dropout=0.0,
|
353 |
+
embedding_dropout=0.0,
|
354 |
+
norm_eps=1e-5):
|
355 |
+
super().__init__()
|
356 |
+
self.embed_dim = embed_dim
|
357 |
+
self.image_size = image_size
|
358 |
+
self.patch_size = patch_size
|
359 |
+
self.vision_dim = vision_dim
|
360 |
+
self.vision_mlp_ratio = vision_mlp_ratio
|
361 |
+
self.vision_heads = vision_heads
|
362 |
+
self.vision_layers = vision_layers
|
363 |
+
self.vision_pre_norm = vision_pre_norm
|
364 |
+
self.vision_post_norm = vision_post_norm
|
365 |
+
self.activation = activation
|
366 |
+
self.vocab_size = vocab_size
|
367 |
+
self.max_text_len = max_text_len
|
368 |
+
self.type_size = type_size
|
369 |
+
self.pad_id = pad_id
|
370 |
+
self.text_dim = text_dim
|
371 |
+
self.text_heads = text_heads
|
372 |
+
self.text_layers = text_layers
|
373 |
+
self.text_post_norm = text_post_norm
|
374 |
+
self.norm_eps = norm_eps
|
375 |
+
|
376 |
+
# models
|
377 |
+
self.visual = VisionTransformer(
|
378 |
+
image_size=image_size,
|
379 |
+
patch_size=patch_size,
|
380 |
+
dim=vision_dim,
|
381 |
+
mlp_ratio=vision_mlp_ratio,
|
382 |
+
out_dim=embed_dim,
|
383 |
+
num_heads=vision_heads,
|
384 |
+
num_layers=vision_layers,
|
385 |
+
pool_type=vision_pool,
|
386 |
+
pre_norm=vision_pre_norm,
|
387 |
+
post_norm=vision_post_norm,
|
388 |
+
activation=activation,
|
389 |
+
attn_dropout=attn_dropout,
|
390 |
+
proj_dropout=proj_dropout,
|
391 |
+
embedding_dropout=embedding_dropout,
|
392 |
+
norm_eps=norm_eps)
|
393 |
+
self.textual = XLMRobertaWithHead(
|
394 |
+
vocab_size=vocab_size,
|
395 |
+
max_seq_len=max_text_len,
|
396 |
+
type_size=type_size,
|
397 |
+
pad_id=pad_id,
|
398 |
+
dim=text_dim,
|
399 |
+
out_dim=embed_dim,
|
400 |
+
num_heads=text_heads,
|
401 |
+
num_layers=text_layers,
|
402 |
+
post_norm=text_post_norm,
|
403 |
+
dropout=text_dropout)
|
404 |
+
self.log_scale = nn.Parameter(math.log(1 / 0.07) * torch.ones([]))
|
405 |
+
|
406 |
+
def forward(self, imgs, txt_ids):
|
407 |
+
"""
|
408 |
+
imgs: [B, 3, H, W] of torch.float32.
|
409 |
+
- mean: [0.48145466, 0.4578275, 0.40821073]
|
410 |
+
- std: [0.26862954, 0.26130258, 0.27577711]
|
411 |
+
txt_ids: [B, L] of torch.long.
|
412 |
+
Encoded by data.CLIPTokenizer.
|
413 |
+
"""
|
414 |
+
xi = self.visual(imgs)
|
415 |
+
xt = self.textual(txt_ids)
|
416 |
+
return xi, xt
|
417 |
+
|
418 |
+
def param_groups(self):
|
419 |
+
groups = [{
|
420 |
+
'params': [
|
421 |
+
p for n, p in self.named_parameters()
|
422 |
+
if 'norm' in n or n.endswith('bias')
|
423 |
+
],
|
424 |
+
'weight_decay': 0.0
|
425 |
+
}, {
|
426 |
+
'params': [
|
427 |
+
p for n, p in self.named_parameters()
|
428 |
+
if not ('norm' in n or n.endswith('bias'))
|
429 |
+
]
|
430 |
+
}]
|
431 |
+
return groups
|
432 |
+
|
433 |
+
|
434 |
+
def _clip(pretrained=False,
|
435 |
+
pretrained_name=None,
|
436 |
+
model_cls=XLMRobertaCLIP,
|
437 |
+
return_transforms=False,
|
438 |
+
return_tokenizer=False,
|
439 |
+
tokenizer_padding='eos',
|
440 |
+
dtype=torch.float32,
|
441 |
+
device='cpu',
|
442 |
+
**kwargs):
|
443 |
+
# init a model on device
|
444 |
+
with torch.device(device):
|
445 |
+
model = model_cls(**kwargs)
|
446 |
+
|
447 |
+
# set device
|
448 |
+
model = model.to(dtype=dtype, device=device)
|
449 |
+
output = (model,)
|
450 |
+
|
451 |
+
# init transforms
|
452 |
+
if return_transforms:
|
453 |
+
# mean and std
|
454 |
+
if 'siglip' in pretrained_name.lower():
|
455 |
+
mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
|
456 |
+
else:
|
457 |
+
mean = [0.48145466, 0.4578275, 0.40821073]
|
458 |
+
std = [0.26862954, 0.26130258, 0.27577711]
|
459 |
+
|
460 |
+
# transforms
|
461 |
+
transforms = T.Compose([
|
462 |
+
T.Resize((model.image_size, model.image_size),
|
463 |
+
interpolation=T.InterpolationMode.BICUBIC),
|
464 |
+
T.ToTensor(),
|
465 |
+
T.Normalize(mean=mean, std=std)
|
466 |
+
])
|
467 |
+
output += (transforms,)
|
468 |
+
return output[0] if len(output) == 1 else output
|
469 |
+
|
470 |
+
|
471 |
+
def clip_xlm_roberta_vit_h_14(
|
472 |
+
pretrained=False,
|
473 |
+
pretrained_name='open-clip-xlm-roberta-large-vit-huge-14',
|
474 |
+
**kwargs):
|
475 |
+
cfg = dict(
|
476 |
+
embed_dim=1024,
|
477 |
+
image_size=224,
|
478 |
+
patch_size=14,
|
479 |
+
vision_dim=1280,
|
480 |
+
vision_mlp_ratio=4,
|
481 |
+
vision_heads=16,
|
482 |
+
vision_layers=32,
|
483 |
+
vision_pool='token',
|
484 |
+
activation='gelu',
|
485 |
+
vocab_size=250002,
|
486 |
+
max_text_len=514,
|
487 |
+
type_size=1,
|
488 |
+
pad_id=1,
|
489 |
+
text_dim=1024,
|
490 |
+
text_heads=16,
|
491 |
+
text_layers=24,
|
492 |
+
text_post_norm=True,
|
493 |
+
text_dropout=0.1,
|
494 |
+
attn_dropout=0.0,
|
495 |
+
proj_dropout=0.0,
|
496 |
+
embedding_dropout=0.0)
|
497 |
+
cfg.update(**kwargs)
|
498 |
+
return _clip(pretrained, pretrained_name, XLMRobertaCLIP, **cfg)
|
499 |
+
|
500 |
+
|
501 |
+
class CLIPModel:
|
502 |
+
|
503 |
+
def __init__(self, dtype, device, checkpoint_path, tokenizer_path):
|
504 |
+
self.dtype = dtype
|
505 |
+
self.device = device
|
506 |
+
self.checkpoint_path = checkpoint_path
|
507 |
+
self.tokenizer_path = tokenizer_path
|
508 |
+
|
509 |
+
# init model
|
510 |
+
self.model, self.transforms = clip_xlm_roberta_vit_h_14(
|
511 |
+
pretrained=False,
|
512 |
+
return_transforms=True,
|
513 |
+
return_tokenizer=False,
|
514 |
+
dtype=dtype,
|
515 |
+
device=device)
|
516 |
+
self.model = self.model.eval().requires_grad_(False)
|
517 |
+
logging.info(f'loading {checkpoint_path}')
|
518 |
+
self.model.load_state_dict(
|
519 |
+
torch.load(checkpoint_path, map_location='cpu'))
|
520 |
+
|
521 |
+
# init tokenizer
|
522 |
+
self.tokenizer = HuggingfaceTokenizer(
|
523 |
+
name=tokenizer_path,
|
524 |
+
seq_len=self.model.max_text_len - 2,
|
525 |
+
clean='whitespace')
|
526 |
+
|
527 |
+
def visual(self, videos):
|
528 |
+
# preprocess
|
529 |
+
size = (self.model.image_size,) * 2
|
530 |
+
videos = torch.cat([
|
531 |
+
F.interpolate(
|
532 |
+
u.transpose(0, 1),
|
533 |
+
size=size,
|
534 |
+
mode='bicubic',
|
535 |
+
align_corners=False) for u in videos
|
536 |
+
])
|
537 |
+
videos = self.transforms.transforms[-1](videos.mul_(0.5).add_(0.5))
|
538 |
+
|
539 |
+
# forward
|
540 |
+
with torch.amp.autocast("cuda", dtype=self.dtype):
|
541 |
+
out = self.model.visual(videos, use_31_block=True)
|
542 |
+
return out
|
wan/modules/model.py
ADDED
@@ -0,0 +1,633 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.amp as amp
|
6 |
+
import torch.nn as nn
|
7 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
8 |
+
from diffusers.models.modeling_utils import ModelMixin
|
9 |
+
|
10 |
+
from .attention import flash_attention
|
11 |
+
|
12 |
+
__all__ = ['WanModel']
|
13 |
+
|
14 |
+
|
15 |
+
def sinusoidal_embedding_1d(dim, position):
|
16 |
+
# preprocess
|
17 |
+
assert dim % 2 == 0
|
18 |
+
half = dim // 2
|
19 |
+
position = position.type(torch.float64)
|
20 |
+
|
21 |
+
# calculation
|
22 |
+
sinusoid = torch.outer(
|
23 |
+
position, torch.pow(10000, -torch.arange(half).to(position).div(half)))
|
24 |
+
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
|
25 |
+
return x
|
26 |
+
|
27 |
+
|
28 |
+
@amp.autocast("cuda", enabled=False)
|
29 |
+
def rope_params(max_seq_len, dim, theta=10000):
|
30 |
+
assert dim % 2 == 0
|
31 |
+
freqs = torch.outer(
|
32 |
+
torch.arange(max_seq_len),
|
33 |
+
1.0 / torch.pow(theta,
|
34 |
+
torch.arange(0, dim, 2).to(torch.float64).div(dim)))
|
35 |
+
freqs = torch.polar(torch.ones_like(freqs), freqs)
|
36 |
+
return freqs
|
37 |
+
|
38 |
+
|
39 |
+
@amp.autocast("cuda", enabled=False)
|
40 |
+
def rope_apply(x, grid_sizes, freqs):
|
41 |
+
n, c = x.size(2), x.size(3) // 2
|
42 |
+
|
43 |
+
# split freqs
|
44 |
+
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
|
45 |
+
|
46 |
+
# loop over samples
|
47 |
+
output = []
|
48 |
+
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
|
49 |
+
seq_len = f * h * w
|
50 |
+
|
51 |
+
# precompute multipliers
|
52 |
+
x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape(
|
53 |
+
seq_len, n, -1, 2))
|
54 |
+
freqs_i = torch.cat([
|
55 |
+
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
|
56 |
+
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
|
57 |
+
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
|
58 |
+
],
|
59 |
+
dim=-1).reshape(seq_len, 1, -1)
|
60 |
+
|
61 |
+
# apply rotary embedding
|
62 |
+
x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
|
63 |
+
x_i = torch.cat([x_i, x[i, seq_len:]])
|
64 |
+
|
65 |
+
# append to collection
|
66 |
+
output.append(x_i)
|
67 |
+
return torch.stack(output).float()
|
68 |
+
|
69 |
+
|
70 |
+
class WanRMSNorm(nn.Module):
|
71 |
+
|
72 |
+
def __init__(self, dim, eps=1e-5):
|
73 |
+
super().__init__()
|
74 |
+
self.dim = dim
|
75 |
+
self.eps = eps
|
76 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
77 |
+
|
78 |
+
def forward(self, x):
|
79 |
+
r"""
|
80 |
+
Args:
|
81 |
+
x(Tensor): Shape [B, L, C]
|
82 |
+
"""
|
83 |
+
return self._norm(x.float()).type_as(x) * self.weight
|
84 |
+
|
85 |
+
def _norm(self, x):
|
86 |
+
return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)
|
87 |
+
|
88 |
+
|
89 |
+
class WanLayerNorm(nn.LayerNorm):
|
90 |
+
|
91 |
+
def __init__(self, dim, eps=1e-6, elementwise_affine=False):
|
92 |
+
super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps)
|
93 |
+
|
94 |
+
def forward(self, x):
|
95 |
+
r"""
|
96 |
+
Args:
|
97 |
+
x(Tensor): Shape [B, L, C]
|
98 |
+
"""
|
99 |
+
return super().forward(x.float()).type_as(x)
|
100 |
+
|
101 |
+
|
102 |
+
class WanSelfAttention(nn.Module):
|
103 |
+
|
104 |
+
def __init__(self,
|
105 |
+
dim,
|
106 |
+
num_heads,
|
107 |
+
window_size=(-1, -1),
|
108 |
+
qk_norm=True,
|
109 |
+
eps=1e-6):
|
110 |
+
assert dim % num_heads == 0
|
111 |
+
super().__init__()
|
112 |
+
self.dim = dim
|
113 |
+
self.num_heads = num_heads
|
114 |
+
self.head_dim = dim // num_heads
|
115 |
+
self.window_size = window_size
|
116 |
+
self.qk_norm = qk_norm
|
117 |
+
self.eps = eps
|
118 |
+
|
119 |
+
# layers
|
120 |
+
self.q = nn.Linear(dim, dim)
|
121 |
+
self.k = nn.Linear(dim, dim)
|
122 |
+
self.v = nn.Linear(dim, dim)
|
123 |
+
self.o = nn.Linear(dim, dim)
|
124 |
+
self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
|
125 |
+
self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
|
126 |
+
|
127 |
+
def forward(self, x, seq_lens, grid_sizes, freqs):
|
128 |
+
r"""
|
129 |
+
Args:
|
130 |
+
x(Tensor): Shape [B, L, num_heads, C / num_heads]
|
131 |
+
seq_lens(Tensor): Shape [B]
|
132 |
+
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
|
133 |
+
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
134 |
+
"""
|
135 |
+
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
|
136 |
+
|
137 |
+
# query, key, value function
|
138 |
+
def qkv_fn(x):
|
139 |
+
q = self.norm_q(self.q(x)).view(b, s, n, d)
|
140 |
+
k = self.norm_k(self.k(x)).view(b, s, n, d)
|
141 |
+
v = self.v(x).view(b, s, n, d)
|
142 |
+
return q, k, v
|
143 |
+
|
144 |
+
q, k, v = qkv_fn(x)
|
145 |
+
|
146 |
+
x = flash_attention(
|
147 |
+
q=rope_apply(q, grid_sizes, freqs),
|
148 |
+
k=rope_apply(k, grid_sizes, freqs),
|
149 |
+
v=v,
|
150 |
+
k_lens=seq_lens,
|
151 |
+
window_size=self.window_size)
|
152 |
+
|
153 |
+
# output
|
154 |
+
x = x.flatten(2)
|
155 |
+
x = self.o(x)
|
156 |
+
return x
|
157 |
+
|
158 |
+
|
159 |
+
class WanT2VCrossAttention(WanSelfAttention):
|
160 |
+
|
161 |
+
def forward(self, x, context, context_lens):
|
162 |
+
r"""
|
163 |
+
Args:
|
164 |
+
x(Tensor): Shape [B, L1, C]
|
165 |
+
context(Tensor): Shape [B, L2, C]
|
166 |
+
context_lens(Tensor): Shape [B]
|
167 |
+
"""
|
168 |
+
b, n, d = x.size(0), self.num_heads, self.head_dim
|
169 |
+
|
170 |
+
# compute query, key, value
|
171 |
+
q = self.norm_q(self.q(x)).view(b, -1, n, d)
|
172 |
+
k = self.norm_k(self.k(context)).view(b, -1, n, d)
|
173 |
+
v = self.v(context).view(b, -1, n, d)
|
174 |
+
|
175 |
+
# compute attention
|
176 |
+
x = flash_attention(q, k, v, k_lens=context_lens)
|
177 |
+
|
178 |
+
# output
|
179 |
+
x = x.flatten(2)
|
180 |
+
x = self.o(x)
|
181 |
+
return x
|
182 |
+
|
183 |
+
|
184 |
+
class WanI2VCrossAttention(WanSelfAttention):
|
185 |
+
|
186 |
+
def __init__(self,
|
187 |
+
dim,
|
188 |
+
num_heads,
|
189 |
+
window_size=(-1, -1),
|
190 |
+
qk_norm=True,
|
191 |
+
eps=1e-6):
|
192 |
+
super().__init__(dim, num_heads, window_size, qk_norm, eps)
|
193 |
+
|
194 |
+
self.k_img = nn.Linear(dim, dim)
|
195 |
+
self.v_img = nn.Linear(dim, dim)
|
196 |
+
# self.alpha = nn.Parameter(torch.zeros((1, )))
|
197 |
+
self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
|
198 |
+
|
199 |
+
def forward(self, x, context, context_lens):
|
200 |
+
r"""
|
201 |
+
Args:
|
202 |
+
x(Tensor): Shape [B, L1, C]
|
203 |
+
context(Tensor): Shape [B, L2, C]
|
204 |
+
context_lens(Tensor): Shape [B]
|
205 |
+
"""
|
206 |
+
context_img = context[:, :257]
|
207 |
+
context = context[:, 257:]
|
208 |
+
b, n, d = x.size(0), self.num_heads, self.head_dim
|
209 |
+
|
210 |
+
# compute query, key, value
|
211 |
+
q = self.norm_q(self.q(x)).view(b, -1, n, d)
|
212 |
+
k = self.norm_k(self.k(context)).view(b, -1, n, d)
|
213 |
+
v = self.v(context).view(b, -1, n, d)
|
214 |
+
k_img = self.norm_k_img(self.k_img(context_img)).view(b, -1, n, d)
|
215 |
+
v_img = self.v_img(context_img).view(b, -1, n, d)
|
216 |
+
img_x = flash_attention(q, k_img, v_img, k_lens=None)
|
217 |
+
# compute attention
|
218 |
+
x = flash_attention(q, k, v, k_lens=context_lens)
|
219 |
+
|
220 |
+
# output
|
221 |
+
x = x.flatten(2)
|
222 |
+
img_x = img_x.flatten(2)
|
223 |
+
x = x + img_x
|
224 |
+
x = self.o(x)
|
225 |
+
return x
|
226 |
+
|
227 |
+
|
228 |
+
WAN_CROSSATTENTION_CLASSES = {
|
229 |
+
't2v_cross_attn': WanT2VCrossAttention,
|
230 |
+
'i2v_cross_attn': WanI2VCrossAttention,
|
231 |
+
}
|
232 |
+
|
233 |
+
|
234 |
+
class WanAttentionBlock(nn.Module):
|
235 |
+
|
236 |
+
def __init__(self,
|
237 |
+
cross_attn_type,
|
238 |
+
dim,
|
239 |
+
ffn_dim,
|
240 |
+
num_heads,
|
241 |
+
window_size=(-1, -1),
|
242 |
+
qk_norm=True,
|
243 |
+
cross_attn_norm=False,
|
244 |
+
eps=1e-6):
|
245 |
+
super().__init__()
|
246 |
+
self.dim = dim
|
247 |
+
self.ffn_dim = ffn_dim
|
248 |
+
self.num_heads = num_heads
|
249 |
+
self.window_size = window_size
|
250 |
+
self.qk_norm = qk_norm
|
251 |
+
self.cross_attn_norm = cross_attn_norm
|
252 |
+
self.eps = eps
|
253 |
+
|
254 |
+
# layers
|
255 |
+
self.norm1 = WanLayerNorm(dim, eps)
|
256 |
+
self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm,
|
257 |
+
eps)
|
258 |
+
self.norm3 = WanLayerNorm(
|
259 |
+
dim, eps,
|
260 |
+
elementwise_affine=True) if cross_attn_norm else nn.Identity()
|
261 |
+
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim,
|
262 |
+
num_heads,
|
263 |
+
(-1, -1),
|
264 |
+
qk_norm,
|
265 |
+
eps)
|
266 |
+
self.norm2 = WanLayerNorm(dim, eps)
|
267 |
+
self.ffn = nn.Sequential(
|
268 |
+
nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'),
|
269 |
+
nn.Linear(ffn_dim, dim))
|
270 |
+
|
271 |
+
# modulation
|
272 |
+
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
|
273 |
+
|
274 |
+
def forward(
|
275 |
+
self,
|
276 |
+
x,
|
277 |
+
e,
|
278 |
+
seq_lens,
|
279 |
+
grid_sizes,
|
280 |
+
freqs,
|
281 |
+
context,
|
282 |
+
context_lens,
|
283 |
+
):
|
284 |
+
r"""
|
285 |
+
Args:
|
286 |
+
x(Tensor): Shape [B, L, C]
|
287 |
+
e(Tensor): Shape [B, 6, C]
|
288 |
+
seq_lens(Tensor): Shape [B], length of each sequence in batch
|
289 |
+
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
|
290 |
+
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
291 |
+
"""
|
292 |
+
assert e.dtype == torch.float32
|
293 |
+
with amp.autocast("cuda", dtype=torch.float32):
|
294 |
+
e = (self.modulation + e).chunk(6, dim=1)
|
295 |
+
assert e[0].dtype == torch.float32
|
296 |
+
|
297 |
+
# self-attention
|
298 |
+
y = self.self_attn(
|
299 |
+
self.norm1(x).float() * (1 + e[1]) + e[0], seq_lens, grid_sizes,
|
300 |
+
freqs)
|
301 |
+
with amp.autocast("cuda", dtype=torch.float32):
|
302 |
+
x = x + y * e[2]
|
303 |
+
|
304 |
+
# cross-attention & ffn function
|
305 |
+
def cross_attn_ffn(x, context, context_lens, e):
|
306 |
+
x = x + self.cross_attn(self.norm3(x), context, context_lens)
|
307 |
+
y = self.ffn(self.norm2(x).float() * (1 + e[4]) + e[3])
|
308 |
+
with amp.autocast("cuda", dtype=torch.float32):
|
309 |
+
x = x + y * e[5]
|
310 |
+
return x
|
311 |
+
|
312 |
+
x = cross_attn_ffn(x, context, context_lens, e)
|
313 |
+
return x
|
314 |
+
|
315 |
+
|
316 |
+
class Head(nn.Module):
|
317 |
+
|
318 |
+
def __init__(self, dim, out_dim, patch_size, eps=1e-6):
|
319 |
+
super().__init__()
|
320 |
+
self.dim = dim
|
321 |
+
self.out_dim = out_dim
|
322 |
+
self.patch_size = patch_size
|
323 |
+
self.eps = eps
|
324 |
+
|
325 |
+
# layers
|
326 |
+
out_dim = math.prod(patch_size) * out_dim
|
327 |
+
self.norm = WanLayerNorm(dim, eps)
|
328 |
+
self.head = nn.Linear(dim, out_dim)
|
329 |
+
|
330 |
+
# modulation
|
331 |
+
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)
|
332 |
+
|
333 |
+
def forward(self, x, e):
|
334 |
+
r"""
|
335 |
+
Args:
|
336 |
+
x(Tensor): Shape [B, L1, C]
|
337 |
+
e(Tensor): Shape [B, C]
|
338 |
+
"""
|
339 |
+
assert e.dtype == torch.float32
|
340 |
+
with amp.autocast("cuda", dtype=torch.float32):
|
341 |
+
e = (self.modulation + e.unsqueeze(1)).chunk(2, dim=1)
|
342 |
+
x = (self.head(self.norm(x) * (1 + e[1]) + e[0]))
|
343 |
+
return x
|
344 |
+
|
345 |
+
|
346 |
+
class MLPProj(torch.nn.Module):
|
347 |
+
|
348 |
+
def __init__(self, in_dim, out_dim):
|
349 |
+
super().__init__()
|
350 |
+
|
351 |
+
self.proj = torch.nn.Sequential(
|
352 |
+
torch.nn.LayerNorm(in_dim), torch.nn.Linear(in_dim, in_dim),
|
353 |
+
torch.nn.GELU(), torch.nn.Linear(in_dim, out_dim),
|
354 |
+
torch.nn.LayerNorm(out_dim))
|
355 |
+
|
356 |
+
def forward(self, image_embeds):
|
357 |
+
clip_extra_context_tokens = self.proj(image_embeds)
|
358 |
+
return clip_extra_context_tokens
|
359 |
+
|
360 |
+
|
361 |
+
class WanModel(ModelMixin, ConfigMixin):
|
362 |
+
r"""
|
363 |
+
Wan diffusion backbone supporting both text-to-video and image-to-video.
|
364 |
+
"""
|
365 |
+
|
366 |
+
ignore_for_config = [
|
367 |
+
'patch_size', 'cross_attn_norm', 'qk_norm', 'text_dim', 'window_size'
|
368 |
+
]
|
369 |
+
_no_split_modules = ['WanAttentionBlock']
|
370 |
+
|
371 |
+
@register_to_config
|
372 |
+
def __init__(self,
|
373 |
+
model_type='t2v',
|
374 |
+
patch_size=(1, 2, 2),
|
375 |
+
text_len=512,
|
376 |
+
in_dim=16,
|
377 |
+
dim=2048,
|
378 |
+
ffn_dim=8192,
|
379 |
+
freq_dim=256,
|
380 |
+
text_dim=4096,
|
381 |
+
out_dim=16,
|
382 |
+
num_heads=16,
|
383 |
+
num_layers=32,
|
384 |
+
window_size=(-1, -1),
|
385 |
+
qk_norm=True,
|
386 |
+
cross_attn_norm=True,
|
387 |
+
eps=1e-6):
|
388 |
+
r"""
|
389 |
+
Initialize the diffusion model backbone.
|
390 |
+
|
391 |
+
Args:
|
392 |
+
model_type (`str`, *optional*, defaults to 't2v'):
|
393 |
+
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
|
394 |
+
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
|
395 |
+
3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
|
396 |
+
text_len (`int`, *optional*, defaults to 512):
|
397 |
+
Fixed length for text embeddings
|
398 |
+
in_dim (`int`, *optional*, defaults to 16):
|
399 |
+
Input video channels (C_in)
|
400 |
+
dim (`int`, *optional*, defaults to 2048):
|
401 |
+
Hidden dimension of the transformer
|
402 |
+
ffn_dim (`int`, *optional*, defaults to 8192):
|
403 |
+
Intermediate dimension in feed-forward network
|
404 |
+
freq_dim (`int`, *optional*, defaults to 256):
|
405 |
+
Dimension for sinusoidal time embeddings
|
406 |
+
text_dim (`int`, *optional*, defaults to 4096):
|
407 |
+
Input dimension for text embeddings
|
408 |
+
out_dim (`int`, *optional*, defaults to 16):
|
409 |
+
Output video channels (C_out)
|
410 |
+
num_heads (`int`, *optional*, defaults to 16):
|
411 |
+
Number of attention heads
|
412 |
+
num_layers (`int`, *optional*, defaults to 32):
|
413 |
+
Number of transformer blocks
|
414 |
+
window_size (`tuple`, *optional*, defaults to (-1, -1)):
|
415 |
+
Window size for local attention (-1 indicates global attention)
|
416 |
+
qk_norm (`bool`, *optional*, defaults to True):
|
417 |
+
Enable query/key normalization
|
418 |
+
cross_attn_norm (`bool`, *optional*, defaults to False):
|
419 |
+
Enable cross-attention normalization
|
420 |
+
eps (`float`, *optional*, defaults to 1e-6):
|
421 |
+
Epsilon value for normalization layers
|
422 |
+
"""
|
423 |
+
|
424 |
+
super().__init__()
|
425 |
+
|
426 |
+
assert model_type in ['t2v', 'i2v']
|
427 |
+
self.model_type = model_type
|
428 |
+
|
429 |
+
self.patch_size = patch_size
|
430 |
+
self.text_len = text_len
|
431 |
+
self.in_dim = in_dim
|
432 |
+
self.dim = dim
|
433 |
+
self.ffn_dim = ffn_dim
|
434 |
+
self.freq_dim = freq_dim
|
435 |
+
self.text_dim = text_dim
|
436 |
+
self.out_dim = out_dim
|
437 |
+
self.num_heads = num_heads
|
438 |
+
self.num_layers = num_layers
|
439 |
+
self.window_size = window_size
|
440 |
+
self.qk_norm = qk_norm
|
441 |
+
self.cross_attn_norm = cross_attn_norm
|
442 |
+
self.eps = eps
|
443 |
+
|
444 |
+
# embeddings
|
445 |
+
self.patch_embedding = nn.Conv3d(
|
446 |
+
in_dim,
|
447 |
+
dim,
|
448 |
+
kernel_size=patch_size,
|
449 |
+
stride=patch_size,
|
450 |
+
)
|
451 |
+
self.text_embedding = nn.Sequential(
|
452 |
+
nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'),
|
453 |
+
nn.Linear(dim, dim))
|
454 |
+
|
455 |
+
self.time_embedding = nn.Sequential(
|
456 |
+
nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
|
457 |
+
self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6))
|
458 |
+
|
459 |
+
# blocks
|
460 |
+
cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn'
|
461 |
+
self.blocks = nn.ModuleList([
|
462 |
+
WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads,
|
463 |
+
window_size, qk_norm, cross_attn_norm, eps)
|
464 |
+
for _ in range(num_layers)
|
465 |
+
])
|
466 |
+
|
467 |
+
# head
|
468 |
+
self.head = Head(dim, out_dim, patch_size, eps)
|
469 |
+
|
470 |
+
# buffers (don't use register_buffer otherwise dtype will be changed in to())
|
471 |
+
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
|
472 |
+
d = dim // num_heads
|
473 |
+
self.freqs = torch.cat([
|
474 |
+
rope_params(1024, d - 4 * (d // 6)),
|
475 |
+
rope_params(1024, 2 * (d // 6)),
|
476 |
+
rope_params(1024, 2 * (d // 6))
|
477 |
+
],
|
478 |
+
dim=1)
|
479 |
+
|
480 |
+
if model_type == 'i2v':
|
481 |
+
self.img_emb = MLPProj(1280, dim)
|
482 |
+
|
483 |
+
# initialize weights
|
484 |
+
self.init_weights()
|
485 |
+
|
486 |
+
def forward(
|
487 |
+
self,
|
488 |
+
x,
|
489 |
+
t,
|
490 |
+
context,
|
491 |
+
seq_len,
|
492 |
+
clip_fea=None,
|
493 |
+
y=None,
|
494 |
+
):
|
495 |
+
r"""
|
496 |
+
Forward pass through the diffusion model
|
497 |
+
|
498 |
+
Args:
|
499 |
+
x (List[Tensor]):
|
500 |
+
List of input video tensors, each with shape [C_in, F, H, W]
|
501 |
+
t (Tensor):
|
502 |
+
Diffusion timesteps tensor of shape [B]
|
503 |
+
context (List[Tensor]):
|
504 |
+
List of text embeddings each with shape [L, C]
|
505 |
+
seq_len (`int`):
|
506 |
+
Maximum sequence length for positional encoding
|
507 |
+
clip_fea (Tensor, *optional*):
|
508 |
+
CLIP image features for image-to-video mode
|
509 |
+
y (List[Tensor], *optional*):
|
510 |
+
Conditional video inputs for image-to-video mode, same shape as x
|
511 |
+
|
512 |
+
Returns:
|
513 |
+
List[Tensor]:
|
514 |
+
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
|
515 |
+
"""
|
516 |
+
if self.model_type == 'i2v':
|
517 |
+
assert clip_fea is not None and y is not None
|
518 |
+
# params
|
519 |
+
device = self.patch_embedding.weight.device
|
520 |
+
if self.freqs.device != device:
|
521 |
+
self.freqs = self.freqs.to(device)
|
522 |
+
|
523 |
+
if y is not None:
|
524 |
+
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
525 |
+
|
526 |
+
# embeddings
|
527 |
+
original_shapes = [u.shape[1:] for u in x] # Store F, H, W
|
528 |
+
|
529 |
+
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
|
530 |
+
grid_sizes = torch.stack(
|
531 |
+
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
|
532 |
+
x = [u.flatten(2).transpose(1, 2) for u in x]
|
533 |
+
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
|
534 |
+
assert seq_lens.max() <= seq_len
|
535 |
+
x = torch.cat([
|
536 |
+
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
|
537 |
+
dim=1) for u in x
|
538 |
+
])
|
539 |
+
|
540 |
+
# time embeddings
|
541 |
+
with amp.autocast("cuda", dtype=torch.float32):
|
542 |
+
e = self.time_embedding(
|
543 |
+
sinusoidal_embedding_1d(self.freq_dim, t).float())
|
544 |
+
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
545 |
+
assert e.dtype == torch.float32 and e0.dtype == torch.float32
|
546 |
+
|
547 |
+
# context
|
548 |
+
context_lens = None
|
549 |
+
context = self.text_embedding(
|
550 |
+
torch.stack([
|
551 |
+
torch.cat(
|
552 |
+
[u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
|
553 |
+
for u in context
|
554 |
+
]))
|
555 |
+
|
556 |
+
if clip_fea is not None:
|
557 |
+
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
558 |
+
context = torch.concat([context_clip, context], dim=1)
|
559 |
+
|
560 |
+
# arguments
|
561 |
+
kwargs = dict(
|
562 |
+
e=e0,
|
563 |
+
seq_lens=seq_lens,
|
564 |
+
grid_sizes=grid_sizes,
|
565 |
+
freqs=self.freqs,
|
566 |
+
context=context,
|
567 |
+
context_lens=context_lens)
|
568 |
+
|
569 |
+
for block in self.blocks:
|
570 |
+
x = block(x, **kwargs)
|
571 |
+
|
572 |
+
# head
|
573 |
+
x = self.head(x, e)
|
574 |
+
|
575 |
+
# unpatchify
|
576 |
+
# x = self.unpatchify(x, grid_sizes, original_shapes=original_shapes)
|
577 |
+
x = self.unpatchify(x, grid_sizes)
|
578 |
+
|
579 |
+
return [u.float() for u in x]
|
580 |
+
|
581 |
+
def unpatchify(self, x, grid_sizes, original_shapes=None):
|
582 |
+
r"""
|
583 |
+
Reconstruct video tensors from patch embeddings.
|
584 |
+
|
585 |
+
Args:
|
586 |
+
x (List[Tensor]):
|
587 |
+
List of patchified features, each with shape [L, C_out * prod(patch_size)]
|
588 |
+
grid_sizes (Tensor):
|
589 |
+
Original spatial-temporal grid dimensions before patching,
|
590 |
+
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)
|
591 |
+
|
592 |
+
Returns:
|
593 |
+
List[Tensor]:
|
594 |
+
Reconstructed video tensors with shape [C_out, F, H / 8, W / 8]
|
595 |
+
"""
|
596 |
+
|
597 |
+
c = self.out_dim
|
598 |
+
out = []
|
599 |
+
for idx, (u, v) in enumerate(zip(x, grid_sizes.tolist())):
|
600 |
+
u = u[:math.prod(v)].view(*v, *self.patch_size, c)
|
601 |
+
u = torch.einsum('fhwpqrc->cfphqwr', u)
|
602 |
+
u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)])
|
603 |
+
|
604 |
+
if original_shapes is not None:
|
605 |
+
original_H = original_shapes[idx][1]
|
606 |
+
u = u[:, :, :original_H, :]
|
607 |
+
out.append(u)
|
608 |
+
|
609 |
+
return out
|
610 |
+
|
611 |
+
def init_weights(self):
|
612 |
+
r"""
|
613 |
+
Initialize model parameters using Xavier initialization.
|
614 |
+
"""
|
615 |
+
|
616 |
+
# basic init
|
617 |
+
for m in self.modules():
|
618 |
+
if isinstance(m, nn.Linear):
|
619 |
+
nn.init.xavier_uniform_(m.weight)
|
620 |
+
if m.bias is not None:
|
621 |
+
nn.init.zeros_(m.bias)
|
622 |
+
|
623 |
+
# init embeddings
|
624 |
+
nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1))
|
625 |
+
for m in self.text_embedding.modules():
|
626 |
+
if isinstance(m, nn.Linear):
|
627 |
+
nn.init.normal_(m.weight, std=.02)
|
628 |
+
for m in self.time_embedding.modules():
|
629 |
+
if isinstance(m, nn.Linear):
|
630 |
+
nn.init.normal_(m.weight, std=.02)
|
631 |
+
|
632 |
+
# init output layer
|
633 |
+
nn.init.zeros_(self.head.head.weight)
|
wan/modules/t5.py
ADDED
@@ -0,0 +1,518 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from transformers.models.t5.modeling_t5
|
2 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
3 |
+
import logging
|
4 |
+
import math
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
from .tokenizers import HuggingfaceTokenizer
|
11 |
+
|
12 |
+
__all__ = [
|
13 |
+
'T5Model',
|
14 |
+
'T5Encoder',
|
15 |
+
'T5Decoder',
|
16 |
+
'T5EncoderModel',
|
17 |
+
]
|
18 |
+
|
19 |
+
|
20 |
+
def fp16_clamp(x):
|
21 |
+
if x.dtype == torch.float16 and torch.isinf(x).any():
|
22 |
+
clamp = torch.finfo(x.dtype).max - 1000
|
23 |
+
x = torch.clamp(x, min=-clamp, max=clamp)
|
24 |
+
return x
|
25 |
+
|
26 |
+
|
27 |
+
def init_weights(m):
|
28 |
+
if isinstance(m, T5LayerNorm):
|
29 |
+
nn.init.ones_(m.weight)
|
30 |
+
elif isinstance(m, T5Model):
|
31 |
+
nn.init.normal_(m.token_embedding.weight, std=1.0)
|
32 |
+
elif isinstance(m, T5FeedForward):
|
33 |
+
nn.init.normal_(m.gate[0].weight, std=m.dim**-0.5)
|
34 |
+
nn.init.normal_(m.fc1.weight, std=m.dim**-0.5)
|
35 |
+
nn.init.normal_(m.fc2.weight, std=m.dim_ffn**-0.5)
|
36 |
+
elif isinstance(m, T5Attention):
|
37 |
+
nn.init.normal_(m.q.weight, std=(m.dim * m.dim_attn)**-0.5)
|
38 |
+
nn.init.normal_(m.k.weight, std=m.dim**-0.5)
|
39 |
+
nn.init.normal_(m.v.weight, std=m.dim**-0.5)
|
40 |
+
nn.init.normal_(m.o.weight, std=(m.num_heads * m.dim_attn)**-0.5)
|
41 |
+
elif isinstance(m, T5RelativeEmbedding):
|
42 |
+
nn.init.normal_(
|
43 |
+
m.embedding.weight, std=(2 * m.num_buckets * m.num_heads)**-0.5)
|
44 |
+
|
45 |
+
|
46 |
+
class GELU(nn.Module):
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
return 0.5 * x * (1.0 + torch.tanh(
|
50 |
+
math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
|
51 |
+
|
52 |
+
|
53 |
+
class T5LayerNorm(nn.Module):
|
54 |
+
|
55 |
+
def __init__(self, dim, eps=1e-6):
|
56 |
+
super(T5LayerNorm, self).__init__()
|
57 |
+
self.dim = dim
|
58 |
+
self.eps = eps
|
59 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
60 |
+
|
61 |
+
def forward(self, x):
|
62 |
+
x = x * torch.rsqrt(x.float().pow(2).mean(dim=-1, keepdim=True) +
|
63 |
+
self.eps)
|
64 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
65 |
+
x = x.type_as(self.weight)
|
66 |
+
return self.weight * x
|
67 |
+
|
68 |
+
|
69 |
+
class T5Attention(nn.Module):
|
70 |
+
|
71 |
+
def __init__(self, dim, dim_attn, num_heads, dropout=0.1):
|
72 |
+
assert dim_attn % num_heads == 0
|
73 |
+
super(T5Attention, self).__init__()
|
74 |
+
self.dim = dim
|
75 |
+
self.dim_attn = dim_attn
|
76 |
+
self.num_heads = num_heads
|
77 |
+
self.head_dim = dim_attn // num_heads
|
78 |
+
|
79 |
+
# layers
|
80 |
+
self.q = nn.Linear(dim, dim_attn, bias=False)
|
81 |
+
self.k = nn.Linear(dim, dim_attn, bias=False)
|
82 |
+
self.v = nn.Linear(dim, dim_attn, bias=False)
|
83 |
+
self.o = nn.Linear(dim_attn, dim, bias=False)
|
84 |
+
self.dropout = nn.Dropout(dropout)
|
85 |
+
|
86 |
+
def forward(self, x, context=None, mask=None, pos_bias=None):
|
87 |
+
"""
|
88 |
+
x: [B, L1, C].
|
89 |
+
context: [B, L2, C] or None.
|
90 |
+
mask: [B, L2] or [B, L1, L2] or None.
|
91 |
+
"""
|
92 |
+
# check inputs
|
93 |
+
context = x if context is None else context
|
94 |
+
b, n, c = x.size(0), self.num_heads, self.head_dim
|
95 |
+
|
96 |
+
# compute query, key, value
|
97 |
+
q = self.q(x).view(b, -1, n, c)
|
98 |
+
k = self.k(context).view(b, -1, n, c)
|
99 |
+
v = self.v(context).view(b, -1, n, c)
|
100 |
+
|
101 |
+
# attention bias
|
102 |
+
attn_bias = x.new_zeros(b, n, q.size(1), k.size(1))
|
103 |
+
if pos_bias is not None:
|
104 |
+
attn_bias += pos_bias
|
105 |
+
if mask is not None:
|
106 |
+
assert mask.ndim in [2, 3]
|
107 |
+
mask = mask.view(b, 1, 1,
|
108 |
+
-1) if mask.ndim == 2 else mask.unsqueeze(1)
|
109 |
+
attn_bias.masked_fill_(mask == 0, torch.finfo(x.dtype).min)
|
110 |
+
|
111 |
+
# compute attention (T5 does not use scaling)
|
112 |
+
attn = torch.einsum('binc,bjnc->bnij', q, k) + attn_bias
|
113 |
+
attn = F.softmax(attn.float(), dim=-1).type_as(attn)
|
114 |
+
x = torch.einsum('bnij,bjnc->binc', attn, v)
|
115 |
+
|
116 |
+
# output
|
117 |
+
x = x.reshape(b, -1, n * c)
|
118 |
+
x = self.o(x)
|
119 |
+
x = self.dropout(x)
|
120 |
+
return x
|
121 |
+
|
122 |
+
|
123 |
+
class T5FeedForward(nn.Module):
|
124 |
+
|
125 |
+
def __init__(self, dim, dim_ffn, dropout=0.1):
|
126 |
+
super(T5FeedForward, self).__init__()
|
127 |
+
self.dim = dim
|
128 |
+
self.dim_ffn = dim_ffn
|
129 |
+
|
130 |
+
# layers
|
131 |
+
self.gate = nn.Sequential(nn.Linear(dim, dim_ffn, bias=False), GELU())
|
132 |
+
self.fc1 = nn.Linear(dim, dim_ffn, bias=False)
|
133 |
+
self.fc2 = nn.Linear(dim_ffn, dim, bias=False)
|
134 |
+
self.dropout = nn.Dropout(dropout)
|
135 |
+
|
136 |
+
def forward(self, x):
|
137 |
+
x = self.fc1(x) * self.gate(x)
|
138 |
+
x = self.dropout(x)
|
139 |
+
x = self.fc2(x)
|
140 |
+
x = self.dropout(x)
|
141 |
+
return x
|
142 |
+
|
143 |
+
|
144 |
+
class T5SelfAttention(nn.Module):
|
145 |
+
|
146 |
+
def __init__(self,
|
147 |
+
dim,
|
148 |
+
dim_attn,
|
149 |
+
dim_ffn,
|
150 |
+
num_heads,
|
151 |
+
num_buckets,
|
152 |
+
shared_pos=True,
|
153 |
+
dropout=0.1):
|
154 |
+
super(T5SelfAttention, self).__init__()
|
155 |
+
self.dim = dim
|
156 |
+
self.dim_attn = dim_attn
|
157 |
+
self.dim_ffn = dim_ffn
|
158 |
+
self.num_heads = num_heads
|
159 |
+
self.num_buckets = num_buckets
|
160 |
+
self.shared_pos = shared_pos
|
161 |
+
|
162 |
+
# layers
|
163 |
+
self.norm1 = T5LayerNorm(dim)
|
164 |
+
self.attn = T5Attention(dim, dim_attn, num_heads, dropout)
|
165 |
+
self.norm2 = T5LayerNorm(dim)
|
166 |
+
self.ffn = T5FeedForward(dim, dim_ffn, dropout)
|
167 |
+
self.pos_embedding = None if shared_pos else T5RelativeEmbedding(
|
168 |
+
num_buckets, num_heads, bidirectional=True)
|
169 |
+
|
170 |
+
def forward(self, x, mask=None, pos_bias=None):
|
171 |
+
e = pos_bias if self.shared_pos else self.pos_embedding(
|
172 |
+
x.size(1), x.size(1))
|
173 |
+
x = fp16_clamp(x + self.attn(self.norm1(x), mask=mask, pos_bias=e))
|
174 |
+
x = fp16_clamp(x + self.ffn(self.norm2(x)))
|
175 |
+
return x
|
176 |
+
|
177 |
+
|
178 |
+
class T5CrossAttention(nn.Module):
|
179 |
+
|
180 |
+
def __init__(self,
|
181 |
+
dim,
|
182 |
+
dim_attn,
|
183 |
+
dim_ffn,
|
184 |
+
num_heads,
|
185 |
+
num_buckets,
|
186 |
+
shared_pos=True,
|
187 |
+
dropout=0.1):
|
188 |
+
super(T5CrossAttention, self).__init__()
|
189 |
+
self.dim = dim
|
190 |
+
self.dim_attn = dim_attn
|
191 |
+
self.dim_ffn = dim_ffn
|
192 |
+
self.num_heads = num_heads
|
193 |
+
self.num_buckets = num_buckets
|
194 |
+
self.shared_pos = shared_pos
|
195 |
+
|
196 |
+
# layers
|
197 |
+
self.norm1 = T5LayerNorm(dim)
|
198 |
+
self.self_attn = T5Attention(dim, dim_attn, num_heads, dropout)
|
199 |
+
self.norm2 = T5LayerNorm(dim)
|
200 |
+
self.cross_attn = T5Attention(dim, dim_attn, num_heads, dropout)
|
201 |
+
self.norm3 = T5LayerNorm(dim)
|
202 |
+
self.ffn = T5FeedForward(dim, dim_ffn, dropout)
|
203 |
+
self.pos_embedding = None if shared_pos else T5RelativeEmbedding(
|
204 |
+
num_buckets, num_heads, bidirectional=False)
|
205 |
+
|
206 |
+
def forward(self,
|
207 |
+
x,
|
208 |
+
mask=None,
|
209 |
+
encoder_states=None,
|
210 |
+
encoder_mask=None,
|
211 |
+
pos_bias=None):
|
212 |
+
e = pos_bias if self.shared_pos else self.pos_embedding(
|
213 |
+
x.size(1), x.size(1))
|
214 |
+
x = fp16_clamp(x + self.self_attn(self.norm1(x), mask=mask, pos_bias=e))
|
215 |
+
x = fp16_clamp(x + self.cross_attn(
|
216 |
+
self.norm2(x), context=encoder_states, mask=encoder_mask))
|
217 |
+
x = fp16_clamp(x + self.ffn(self.norm3(x)))
|
218 |
+
return x
|
219 |
+
|
220 |
+
|
221 |
+
class T5RelativeEmbedding(nn.Module):
|
222 |
+
|
223 |
+
def __init__(self, num_buckets, num_heads, bidirectional, max_dist=128):
|
224 |
+
super(T5RelativeEmbedding, self).__init__()
|
225 |
+
self.num_buckets = num_buckets
|
226 |
+
self.num_heads = num_heads
|
227 |
+
self.bidirectional = bidirectional
|
228 |
+
self.max_dist = max_dist
|
229 |
+
|
230 |
+
# layers
|
231 |
+
self.embedding = nn.Embedding(num_buckets, num_heads)
|
232 |
+
|
233 |
+
def forward(self, lq, lk):
|
234 |
+
device = self.embedding.weight.device
|
235 |
+
# rel_pos = torch.arange(lk).unsqueeze(0).to(device) - \
|
236 |
+
# torch.arange(lq).unsqueeze(1).to(device)
|
237 |
+
rel_pos = torch.arange(lk, device=device).unsqueeze(0) - \
|
238 |
+
torch.arange(lq, device=device).unsqueeze(1)
|
239 |
+
rel_pos = self._relative_position_bucket(rel_pos)
|
240 |
+
rel_pos_embeds = self.embedding(rel_pos)
|
241 |
+
rel_pos_embeds = rel_pos_embeds.permute(2, 0, 1).unsqueeze(
|
242 |
+
0) # [1, N, Lq, Lk]
|
243 |
+
return rel_pos_embeds.contiguous()
|
244 |
+
|
245 |
+
def _relative_position_bucket(self, rel_pos):
|
246 |
+
# preprocess
|
247 |
+
if self.bidirectional:
|
248 |
+
num_buckets = self.num_buckets // 2
|
249 |
+
rel_buckets = (rel_pos > 0).long() * num_buckets
|
250 |
+
rel_pos = torch.abs(rel_pos)
|
251 |
+
else:
|
252 |
+
num_buckets = self.num_buckets
|
253 |
+
rel_buckets = 0
|
254 |
+
rel_pos = -torch.min(rel_pos, torch.zeros_like(rel_pos))
|
255 |
+
|
256 |
+
# embeddings for small and large positions
|
257 |
+
max_exact = num_buckets // 2
|
258 |
+
rel_pos_large = max_exact + (torch.log(rel_pos.float() / max_exact) /
|
259 |
+
math.log(self.max_dist / max_exact) *
|
260 |
+
(num_buckets - max_exact)).long()
|
261 |
+
rel_pos_large = torch.min(
|
262 |
+
rel_pos_large, torch.full_like(rel_pos_large, num_buckets - 1))
|
263 |
+
rel_buckets += torch.where(rel_pos < max_exact, rel_pos, rel_pos_large)
|
264 |
+
return rel_buckets
|
265 |
+
|
266 |
+
|
267 |
+
class T5Encoder(nn.Module):
|
268 |
+
|
269 |
+
def __init__(self,
|
270 |
+
vocab,
|
271 |
+
dim,
|
272 |
+
dim_attn,
|
273 |
+
dim_ffn,
|
274 |
+
num_heads,
|
275 |
+
num_layers,
|
276 |
+
num_buckets,
|
277 |
+
shared_pos=True,
|
278 |
+
dropout=0.1):
|
279 |
+
super(T5Encoder, self).__init__()
|
280 |
+
self.dim = dim
|
281 |
+
self.dim_attn = dim_attn
|
282 |
+
self.dim_ffn = dim_ffn
|
283 |
+
self.num_heads = num_heads
|
284 |
+
self.num_layers = num_layers
|
285 |
+
self.num_buckets = num_buckets
|
286 |
+
self.shared_pos = shared_pos
|
287 |
+
|
288 |
+
# layers
|
289 |
+
self.token_embedding = vocab if isinstance(vocab, nn.Embedding) \
|
290 |
+
else nn.Embedding(vocab, dim)
|
291 |
+
self.pos_embedding = T5RelativeEmbedding(
|
292 |
+
num_buckets, num_heads, bidirectional=True) if shared_pos else None
|
293 |
+
self.dropout = nn.Dropout(dropout)
|
294 |
+
self.blocks = nn.ModuleList([
|
295 |
+
T5SelfAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets,
|
296 |
+
shared_pos, dropout) for _ in range(num_layers)
|
297 |
+
])
|
298 |
+
self.norm = T5LayerNorm(dim)
|
299 |
+
|
300 |
+
# initialize weights
|
301 |
+
self.apply(init_weights)
|
302 |
+
|
303 |
+
def forward(self, ids, mask=None):
|
304 |
+
x = self.token_embedding(ids)
|
305 |
+
x = self.dropout(x)
|
306 |
+
e = self.pos_embedding(x.size(1),
|
307 |
+
x.size(1)) if self.shared_pos else None
|
308 |
+
for block in self.blocks:
|
309 |
+
x = block(x, mask, pos_bias=e)
|
310 |
+
x = self.norm(x)
|
311 |
+
x = self.dropout(x)
|
312 |
+
return x
|
313 |
+
|
314 |
+
|
315 |
+
class T5Decoder(nn.Module):
|
316 |
+
|
317 |
+
def __init__(self,
|
318 |
+
vocab,
|
319 |
+
dim,
|
320 |
+
dim_attn,
|
321 |
+
dim_ffn,
|
322 |
+
num_heads,
|
323 |
+
num_layers,
|
324 |
+
num_buckets,
|
325 |
+
shared_pos=True,
|
326 |
+
dropout=0.1):
|
327 |
+
super(T5Decoder, self).__init__()
|
328 |
+
self.dim = dim
|
329 |
+
self.dim_attn = dim_attn
|
330 |
+
self.dim_ffn = dim_ffn
|
331 |
+
self.num_heads = num_heads
|
332 |
+
self.num_layers = num_layers
|
333 |
+
self.num_buckets = num_buckets
|
334 |
+
self.shared_pos = shared_pos
|
335 |
+
|
336 |
+
# layers
|
337 |
+
self.token_embedding = vocab if isinstance(vocab, nn.Embedding) \
|
338 |
+
else nn.Embedding(vocab, dim)
|
339 |
+
self.pos_embedding = T5RelativeEmbedding(
|
340 |
+
num_buckets, num_heads, bidirectional=False) if shared_pos else None
|
341 |
+
self.dropout = nn.Dropout(dropout)
|
342 |
+
self.blocks = nn.ModuleList([
|
343 |
+
T5CrossAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets,
|
344 |
+
shared_pos, dropout) for _ in range(num_layers)
|
345 |
+
])
|
346 |
+
self.norm = T5LayerNorm(dim)
|
347 |
+
|
348 |
+
# initialize weights
|
349 |
+
self.apply(init_weights)
|
350 |
+
|
351 |
+
def forward(self, ids, mask=None, encoder_states=None, encoder_mask=None):
|
352 |
+
b, s = ids.size()
|
353 |
+
|
354 |
+
# causal mask
|
355 |
+
if mask is None:
|
356 |
+
mask = torch.tril(torch.ones(1, s, s).to(ids.device))
|
357 |
+
elif mask.ndim == 2:
|
358 |
+
mask = torch.tril(mask.unsqueeze(1).expand(-1, s, -1))
|
359 |
+
|
360 |
+
# layers
|
361 |
+
x = self.token_embedding(ids)
|
362 |
+
x = self.dropout(x)
|
363 |
+
e = self.pos_embedding(x.size(1),
|
364 |
+
x.size(1)) if self.shared_pos else None
|
365 |
+
for block in self.blocks:
|
366 |
+
x = block(x, mask, encoder_states, encoder_mask, pos_bias=e)
|
367 |
+
x = self.norm(x)
|
368 |
+
x = self.dropout(x)
|
369 |
+
return x
|
370 |
+
|
371 |
+
|
372 |
+
class T5Model(nn.Module):
|
373 |
+
|
374 |
+
def __init__(self,
|
375 |
+
vocab_size,
|
376 |
+
dim,
|
377 |
+
dim_attn,
|
378 |
+
dim_ffn,
|
379 |
+
num_heads,
|
380 |
+
encoder_layers,
|
381 |
+
decoder_layers,
|
382 |
+
num_buckets,
|
383 |
+
shared_pos=True,
|
384 |
+
dropout=0.1):
|
385 |
+
super(T5Model, self).__init__()
|
386 |
+
self.vocab_size = vocab_size
|
387 |
+
self.dim = dim
|
388 |
+
self.dim_attn = dim_attn
|
389 |
+
self.dim_ffn = dim_ffn
|
390 |
+
self.num_heads = num_heads
|
391 |
+
self.encoder_layers = encoder_layers
|
392 |
+
self.decoder_layers = decoder_layers
|
393 |
+
self.num_buckets = num_buckets
|
394 |
+
|
395 |
+
# layers
|
396 |
+
self.token_embedding = nn.Embedding(vocab_size, dim)
|
397 |
+
self.encoder = T5Encoder(self.token_embedding, dim, dim_attn, dim_ffn,
|
398 |
+
num_heads, encoder_layers, num_buckets,
|
399 |
+
shared_pos, dropout)
|
400 |
+
self.decoder = T5Decoder(self.token_embedding, dim, dim_attn, dim_ffn,
|
401 |
+
num_heads, decoder_layers, num_buckets,
|
402 |
+
shared_pos, dropout)
|
403 |
+
self.head = nn.Linear(dim, vocab_size, bias=False)
|
404 |
+
|
405 |
+
# initialize weights
|
406 |
+
self.apply(init_weights)
|
407 |
+
|
408 |
+
def forward(self, encoder_ids, encoder_mask, decoder_ids, decoder_mask):
|
409 |
+
x = self.encoder(encoder_ids, encoder_mask)
|
410 |
+
x = self.decoder(decoder_ids, decoder_mask, x, encoder_mask)
|
411 |
+
x = self.head(x)
|
412 |
+
return x
|
413 |
+
|
414 |
+
|
415 |
+
def _t5(name,
|
416 |
+
encoder_only=False,
|
417 |
+
decoder_only=False,
|
418 |
+
return_tokenizer=False,
|
419 |
+
tokenizer_kwargs={},
|
420 |
+
dtype=torch.float32,
|
421 |
+
device='cpu',
|
422 |
+
**kwargs):
|
423 |
+
# sanity check
|
424 |
+
assert not (encoder_only and decoder_only)
|
425 |
+
|
426 |
+
# params
|
427 |
+
if encoder_only:
|
428 |
+
model_cls = T5Encoder
|
429 |
+
kwargs['vocab'] = kwargs.pop('vocab_size')
|
430 |
+
kwargs['num_layers'] = kwargs.pop('encoder_layers')
|
431 |
+
_ = kwargs.pop('decoder_layers')
|
432 |
+
elif decoder_only:
|
433 |
+
model_cls = T5Decoder
|
434 |
+
kwargs['vocab'] = kwargs.pop('vocab_size')
|
435 |
+
kwargs['num_layers'] = kwargs.pop('decoder_layers')
|
436 |
+
_ = kwargs.pop('encoder_layers')
|
437 |
+
else:
|
438 |
+
model_cls = T5Model
|
439 |
+
|
440 |
+
# init model
|
441 |
+
with torch.device(device):
|
442 |
+
model = model_cls(**kwargs)
|
443 |
+
|
444 |
+
# set device
|
445 |
+
model = model.to(dtype=dtype, device=device)
|
446 |
+
|
447 |
+
# init tokenizer
|
448 |
+
if return_tokenizer:
|
449 |
+
from .tokenizers import HuggingfaceTokenizer
|
450 |
+
tokenizer = HuggingfaceTokenizer(f'google/{name}', **tokenizer_kwargs)
|
451 |
+
return model, tokenizer
|
452 |
+
else:
|
453 |
+
return model
|
454 |
+
|
455 |
+
|
456 |
+
def umt5_xxl(**kwargs):
|
457 |
+
cfg = dict(
|
458 |
+
vocab_size=256384,
|
459 |
+
dim=4096,
|
460 |
+
dim_attn=4096,
|
461 |
+
dim_ffn=10240,
|
462 |
+
num_heads=64,
|
463 |
+
encoder_layers=24,
|
464 |
+
decoder_layers=24,
|
465 |
+
num_buckets=32,
|
466 |
+
shared_pos=False,
|
467 |
+
dropout=0.1)
|
468 |
+
cfg.update(**kwargs)
|
469 |
+
return _t5('umt5-xxl', **cfg)
|
470 |
+
|
471 |
+
|
472 |
+
class T5EncoderModel:
|
473 |
+
|
474 |
+
def __init__(
|
475 |
+
self,
|
476 |
+
text_len,
|
477 |
+
dtype=torch.bfloat16,
|
478 |
+
device=torch.cuda.current_device(),
|
479 |
+
checkpoint_path=None,
|
480 |
+
tokenizer_path=None,
|
481 |
+
shard_fn=None,
|
482 |
+
):
|
483 |
+
self.text_len = text_len
|
484 |
+
self.dtype = dtype
|
485 |
+
self.device = device
|
486 |
+
self.checkpoint_path = checkpoint_path
|
487 |
+
self.tokenizer_path = tokenizer_path
|
488 |
+
|
489 |
+
# init model
|
490 |
+
model = umt5_xxl(
|
491 |
+
encoder_only=True,
|
492 |
+
return_tokenizer=False,
|
493 |
+
dtype=dtype,
|
494 |
+
device=device).eval().requires_grad_(False)
|
495 |
+
logging.info(f'loading {checkpoint_path}')
|
496 |
+
model.load_state_dict(torch.load(checkpoint_path, map_location='cpu', weights_only=True))
|
497 |
+
self.model = model
|
498 |
+
if shard_fn is not None:
|
499 |
+
self.model = shard_fn(self.model, sync_module_states=False)
|
500 |
+
else:
|
501 |
+
self.model.to(self.device)
|
502 |
+
# init tokenizer
|
503 |
+
self.tokenizer = HuggingfaceTokenizer(
|
504 |
+
name=tokenizer_path, seq_len=text_len, clean='whitespace')
|
505 |
+
|
506 |
+
def __call__(self, texts, device):
|
507 |
+
ids, mask = self.tokenizer(
|
508 |
+
texts, return_mask=True, add_special_tokens=True)
|
509 |
+
try:
|
510 |
+
ids = ids.to(device)
|
511 |
+
except Exception as e:
|
512 |
+
print(texts)
|
513 |
+
print(e)
|
514 |
+
|
515 |
+
mask = mask.to(device)
|
516 |
+
seq_lens = mask.gt(0).sum(dim=1).long()
|
517 |
+
context = self.model(ids, mask)
|
518 |
+
return [u[:v] for u, v in zip(context, seq_lens)]
|
wan/modules/tokenizers.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import html
|
3 |
+
import string
|
4 |
+
|
5 |
+
import ftfy
|
6 |
+
import regex as re
|
7 |
+
from transformers import AutoTokenizer
|
8 |
+
|
9 |
+
__all__ = ['HuggingfaceTokenizer']
|
10 |
+
|
11 |
+
|
12 |
+
def basic_clean(text):
|
13 |
+
text = ftfy.fix_text(text)
|
14 |
+
text = html.unescape(html.unescape(text))
|
15 |
+
return text.strip()
|
16 |
+
|
17 |
+
|
18 |
+
def whitespace_clean(text):
|
19 |
+
text = re.sub(r'\s+', ' ', text)
|
20 |
+
text = text.strip()
|
21 |
+
return text
|
22 |
+
|
23 |
+
|
24 |
+
def canonicalize(text, keep_punctuation_exact_string=None):
|
25 |
+
text = text.replace('_', ' ')
|
26 |
+
if keep_punctuation_exact_string:
|
27 |
+
text = keep_punctuation_exact_string.join(
|
28 |
+
part.translate(str.maketrans('', '', string.punctuation))
|
29 |
+
for part in text.split(keep_punctuation_exact_string))
|
30 |
+
else:
|
31 |
+
text = text.translate(str.maketrans('', '', string.punctuation))
|
32 |
+
text = text.lower()
|
33 |
+
text = re.sub(r'\s+', ' ', text)
|
34 |
+
return text.strip()
|
35 |
+
|
36 |
+
|
37 |
+
class HuggingfaceTokenizer:
|
38 |
+
|
39 |
+
def __init__(self, name, seq_len=None, clean=None, **kwargs):
|
40 |
+
assert clean in (None, 'whitespace', 'lower', 'canonicalize')
|
41 |
+
self.name = name
|
42 |
+
self.seq_len = seq_len
|
43 |
+
self.clean = clean
|
44 |
+
|
45 |
+
# init tokenizer
|
46 |
+
self.tokenizer = AutoTokenizer.from_pretrained(name, **kwargs)
|
47 |
+
self.vocab_size = self.tokenizer.vocab_size
|
48 |
+
|
49 |
+
def __call__(self, sequence, **kwargs):
|
50 |
+
return_mask = kwargs.pop('return_mask', False)
|
51 |
+
|
52 |
+
# arguments
|
53 |
+
_kwargs = {'return_tensors': 'pt'}
|
54 |
+
if self.seq_len is not None:
|
55 |
+
_kwargs.update({
|
56 |
+
'padding': 'max_length',
|
57 |
+
'truncation': True,
|
58 |
+
'max_length': self.seq_len
|
59 |
+
})
|
60 |
+
_kwargs.update(**kwargs)
|
61 |
+
|
62 |
+
# tokenization
|
63 |
+
if isinstance(sequence, str):
|
64 |
+
sequence = [sequence]
|
65 |
+
if self.clean:
|
66 |
+
sequence = [self._clean(u) for u in sequence]
|
67 |
+
ids = self.tokenizer(sequence, **_kwargs)
|
68 |
+
|
69 |
+
# output
|
70 |
+
if return_mask:
|
71 |
+
return ids.input_ids, ids.attention_mask
|
72 |
+
else:
|
73 |
+
return ids.input_ids
|
74 |
+
|
75 |
+
def _clean(self, text):
|
76 |
+
if self.clean == 'whitespace':
|
77 |
+
text = whitespace_clean(basic_clean(text))
|
78 |
+
elif self.clean == 'lower':
|
79 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
80 |
+
elif self.clean == 'canonicalize':
|
81 |
+
text = canonicalize(basic_clean(text))
|
82 |
+
return text
|
wan/modules/vae.py
ADDED
@@ -0,0 +1,663 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import logging
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.amp as amp
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from einops import rearrange
|
9 |
+
|
10 |
+
__all__ = [
|
11 |
+
'WanVAE',
|
12 |
+
]
|
13 |
+
|
14 |
+
CACHE_T = 2
|
15 |
+
|
16 |
+
|
17 |
+
class CausalConv3d(nn.Conv3d):
|
18 |
+
"""
|
19 |
+
Causal 3d convolusion.
|
20 |
+
"""
|
21 |
+
|
22 |
+
def __init__(self, *args, **kwargs):
|
23 |
+
super().__init__(*args, **kwargs)
|
24 |
+
self._padding = (self.padding[2], self.padding[2], self.padding[1],
|
25 |
+
self.padding[1], 2 * self.padding[0], 0)
|
26 |
+
self.padding = (0, 0, 0)
|
27 |
+
|
28 |
+
def forward(self, x, cache_x=None):
|
29 |
+
padding = list(self._padding)
|
30 |
+
if cache_x is not None and self._padding[4] > 0:
|
31 |
+
cache_x = cache_x.to(x.device)
|
32 |
+
x = torch.cat([cache_x, x], dim=2)
|
33 |
+
padding[4] -= cache_x.shape[2]
|
34 |
+
x = F.pad(x, padding)
|
35 |
+
|
36 |
+
return super().forward(x)
|
37 |
+
|
38 |
+
|
39 |
+
class RMS_norm(nn.Module):
|
40 |
+
|
41 |
+
def __init__(self, dim, channel_first=True, images=True, bias=False):
|
42 |
+
super().__init__()
|
43 |
+
broadcastable_dims = (1, 1, 1) if not images else (1, 1)
|
44 |
+
shape = (dim, *broadcastable_dims) if channel_first else (dim,)
|
45 |
+
|
46 |
+
self.channel_first = channel_first
|
47 |
+
self.scale = dim**0.5
|
48 |
+
self.gamma = nn.Parameter(torch.ones(shape))
|
49 |
+
self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
return F.normalize(
|
53 |
+
x, dim=(1 if self.channel_first else
|
54 |
+
-1)) * self.scale * self.gamma + self.bias
|
55 |
+
|
56 |
+
|
57 |
+
class Upsample(nn.Upsample):
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
"""
|
61 |
+
Fix bfloat16 support for nearest neighbor interpolation.
|
62 |
+
"""
|
63 |
+
return super().forward(x.float()).type_as(x)
|
64 |
+
|
65 |
+
|
66 |
+
class Resample(nn.Module):
|
67 |
+
|
68 |
+
def __init__(self, dim, mode):
|
69 |
+
assert mode in ('none', 'upsample2d', 'upsample3d', 'downsample2d',
|
70 |
+
'downsample3d')
|
71 |
+
super().__init__()
|
72 |
+
self.dim = dim
|
73 |
+
self.mode = mode
|
74 |
+
|
75 |
+
# layers
|
76 |
+
if mode == 'upsample2d':
|
77 |
+
self.resample = nn.Sequential(
|
78 |
+
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
|
79 |
+
nn.Conv2d(dim, dim // 2, 3, padding=1))
|
80 |
+
elif mode == 'upsample3d':
|
81 |
+
self.resample = nn.Sequential(
|
82 |
+
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
|
83 |
+
nn.Conv2d(dim, dim // 2, 3, padding=1))
|
84 |
+
self.time_conv = CausalConv3d(
|
85 |
+
dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
|
86 |
+
|
87 |
+
elif mode == 'downsample2d':
|
88 |
+
self.resample = nn.Sequential(
|
89 |
+
nn.ZeroPad2d((0, 1, 0, 1)),
|
90 |
+
nn.Conv2d(dim, dim, 3, stride=(2, 2)))
|
91 |
+
elif mode == 'downsample3d':
|
92 |
+
self.resample = nn.Sequential(
|
93 |
+
nn.ZeroPad2d((0, 1, 0, 1)),
|
94 |
+
nn.Conv2d(dim, dim, 3, stride=(2, 2)))
|
95 |
+
self.time_conv = CausalConv3d(
|
96 |
+
dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
|
97 |
+
|
98 |
+
else:
|
99 |
+
self.resample = nn.Identity()
|
100 |
+
|
101 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
102 |
+
b, c, t, h, w = x.size()
|
103 |
+
if self.mode == 'upsample3d':
|
104 |
+
if feat_cache is not None:
|
105 |
+
idx = feat_idx[0]
|
106 |
+
if feat_cache[idx] is None:
|
107 |
+
feat_cache[idx] = 'Rep'
|
108 |
+
feat_idx[0] += 1
|
109 |
+
else:
|
110 |
+
|
111 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
112 |
+
if cache_x.shape[2] < 2 and feat_cache[
|
113 |
+
idx] is not None and feat_cache[idx] != 'Rep':
|
114 |
+
# cache last frame of last two chunk
|
115 |
+
cache_x = torch.cat([
|
116 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
117 |
+
cache_x.device), cache_x
|
118 |
+
],
|
119 |
+
dim=2)
|
120 |
+
if cache_x.shape[2] < 2 and feat_cache[
|
121 |
+
idx] is not None and feat_cache[idx] == 'Rep':
|
122 |
+
cache_x = torch.cat([
|
123 |
+
torch.zeros_like(cache_x).to(cache_x.device),
|
124 |
+
cache_x
|
125 |
+
],
|
126 |
+
dim=2)
|
127 |
+
if feat_cache[idx] == 'Rep':
|
128 |
+
x = self.time_conv(x)
|
129 |
+
else:
|
130 |
+
x = self.time_conv(x, feat_cache[idx])
|
131 |
+
feat_cache[idx] = cache_x
|
132 |
+
feat_idx[0] += 1
|
133 |
+
|
134 |
+
x = x.reshape(b, 2, c, t, h, w)
|
135 |
+
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]),
|
136 |
+
3)
|
137 |
+
x = x.reshape(b, c, t * 2, h, w)
|
138 |
+
t = x.shape[2]
|
139 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
140 |
+
x = self.resample(x)
|
141 |
+
x = rearrange(x, '(b t) c h w -> b c t h w', t=t)
|
142 |
+
|
143 |
+
if self.mode == 'downsample3d':
|
144 |
+
if feat_cache is not None:
|
145 |
+
idx = feat_idx[0]
|
146 |
+
if feat_cache[idx] is None:
|
147 |
+
feat_cache[idx] = x.clone()
|
148 |
+
feat_idx[0] += 1
|
149 |
+
else:
|
150 |
+
|
151 |
+
cache_x = x[:, :, -1:, :, :].clone()
|
152 |
+
# if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx]!='Rep':
|
153 |
+
# # cache last frame of last two chunk
|
154 |
+
# cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
155 |
+
|
156 |
+
x = self.time_conv(
|
157 |
+
torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
|
158 |
+
feat_cache[idx] = cache_x
|
159 |
+
feat_idx[0] += 1
|
160 |
+
return x
|
161 |
+
|
162 |
+
def init_weight(self, conv):
|
163 |
+
conv_weight = conv.weight
|
164 |
+
nn.init.zeros_(conv_weight)
|
165 |
+
c1, c2, t, h, w = conv_weight.size()
|
166 |
+
one_matrix = torch.eye(c1, c2)
|
167 |
+
init_matrix = one_matrix
|
168 |
+
nn.init.zeros_(conv_weight)
|
169 |
+
# conv_weight.data[:,:,-1,1,1] = init_matrix * 0.5
|
170 |
+
conv_weight.data[:, :, 1, 0, 0] = init_matrix # * 0.5
|
171 |
+
conv.weight.data.copy_(conv_weight)
|
172 |
+
nn.init.zeros_(conv.bias.data)
|
173 |
+
|
174 |
+
def init_weight2(self, conv):
|
175 |
+
conv_weight = conv.weight.data
|
176 |
+
nn.init.zeros_(conv_weight)
|
177 |
+
c1, c2, t, h, w = conv_weight.size()
|
178 |
+
init_matrix = torch.eye(c1 // 2, c2)
|
179 |
+
# init_matrix = repeat(init_matrix, 'o ... -> (o 2) ...').permute(1,0,2).contiguous().reshape(c1,c2)
|
180 |
+
conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix
|
181 |
+
conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix
|
182 |
+
conv.weight.data.copy_(conv_weight)
|
183 |
+
nn.init.zeros_(conv.bias.data)
|
184 |
+
|
185 |
+
|
186 |
+
class ResidualBlock(nn.Module):
|
187 |
+
|
188 |
+
def __init__(self, in_dim, out_dim, dropout=0.0):
|
189 |
+
super().__init__()
|
190 |
+
self.in_dim = in_dim
|
191 |
+
self.out_dim = out_dim
|
192 |
+
|
193 |
+
# layers
|
194 |
+
self.residual = nn.Sequential(
|
195 |
+
RMS_norm(in_dim, images=False), nn.SiLU(),
|
196 |
+
CausalConv3d(in_dim, out_dim, 3, padding=1),
|
197 |
+
RMS_norm(out_dim, images=False), nn.SiLU(), nn.Dropout(dropout),
|
198 |
+
CausalConv3d(out_dim, out_dim, 3, padding=1))
|
199 |
+
self.shortcut = CausalConv3d(in_dim, out_dim, 1) \
|
200 |
+
if in_dim != out_dim else nn.Identity()
|
201 |
+
|
202 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
203 |
+
h = self.shortcut(x)
|
204 |
+
for layer in self.residual:
|
205 |
+
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
206 |
+
idx = feat_idx[0]
|
207 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
208 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
209 |
+
# cache last frame of last two chunk
|
210 |
+
cache_x = torch.cat([
|
211 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
212 |
+
cache_x.device), cache_x
|
213 |
+
],
|
214 |
+
dim=2)
|
215 |
+
x = layer(x, feat_cache[idx])
|
216 |
+
feat_cache[idx] = cache_x
|
217 |
+
feat_idx[0] += 1
|
218 |
+
else:
|
219 |
+
x = layer(x)
|
220 |
+
return x + h
|
221 |
+
|
222 |
+
|
223 |
+
class AttentionBlock(nn.Module):
|
224 |
+
"""
|
225 |
+
Causal self-attention with a single head.
|
226 |
+
"""
|
227 |
+
|
228 |
+
def __init__(self, dim):
|
229 |
+
super().__init__()
|
230 |
+
self.dim = dim
|
231 |
+
|
232 |
+
# layers
|
233 |
+
self.norm = RMS_norm(dim)
|
234 |
+
self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
|
235 |
+
self.proj = nn.Conv2d(dim, dim, 1)
|
236 |
+
|
237 |
+
# zero out the last layer params
|
238 |
+
nn.init.zeros_(self.proj.weight)
|
239 |
+
|
240 |
+
def forward(self, x):
|
241 |
+
identity = x
|
242 |
+
b, c, t, h, w = x.size()
|
243 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
244 |
+
x = self.norm(x)
|
245 |
+
# compute query, key, value
|
246 |
+
q, k, v = self.to_qkv(x).reshape(b * t, 1, c * 3,
|
247 |
+
-1).permute(0, 1, 3,
|
248 |
+
2).contiguous().chunk(
|
249 |
+
3, dim=-1)
|
250 |
+
|
251 |
+
# apply attention
|
252 |
+
x = F.scaled_dot_product_attention(
|
253 |
+
q,
|
254 |
+
k,
|
255 |
+
v,
|
256 |
+
)
|
257 |
+
x = x.squeeze(1).permute(0, 2, 1).reshape(b * t, c, h, w)
|
258 |
+
|
259 |
+
# output
|
260 |
+
x = self.proj(x)
|
261 |
+
x = rearrange(x, '(b t) c h w-> b c t h w', t=t)
|
262 |
+
return x + identity
|
263 |
+
|
264 |
+
|
265 |
+
class Encoder3d(nn.Module):
|
266 |
+
|
267 |
+
def __init__(self,
|
268 |
+
dim=128,
|
269 |
+
z_dim=4,
|
270 |
+
dim_mult=[1, 2, 4, 4],
|
271 |
+
num_res_blocks=2,
|
272 |
+
attn_scales=[],
|
273 |
+
temperal_downsample=[True, True, False],
|
274 |
+
dropout=0.0):
|
275 |
+
super().__init__()
|
276 |
+
self.dim = dim
|
277 |
+
self.z_dim = z_dim
|
278 |
+
self.dim_mult = dim_mult
|
279 |
+
self.num_res_blocks = num_res_blocks
|
280 |
+
self.attn_scales = attn_scales
|
281 |
+
self.temperal_downsample = temperal_downsample
|
282 |
+
|
283 |
+
# dimensions
|
284 |
+
dims = [dim * u for u in [1] + dim_mult]
|
285 |
+
scale = 1.0
|
286 |
+
|
287 |
+
# init block
|
288 |
+
self.conv1 = CausalConv3d(3, dims[0], 3, padding=1)
|
289 |
+
|
290 |
+
# downsample blocks
|
291 |
+
downsamples = []
|
292 |
+
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
293 |
+
# residual (+attention) blocks
|
294 |
+
for _ in range(num_res_blocks):
|
295 |
+
downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
|
296 |
+
if scale in attn_scales:
|
297 |
+
downsamples.append(AttentionBlock(out_dim))
|
298 |
+
in_dim = out_dim
|
299 |
+
|
300 |
+
# downsample block
|
301 |
+
if i != len(dim_mult) - 1:
|
302 |
+
mode = 'downsample3d' if temperal_downsample[
|
303 |
+
i] else 'downsample2d'
|
304 |
+
downsamples.append(Resample(out_dim, mode=mode))
|
305 |
+
scale /= 2.0
|
306 |
+
self.downsamples = nn.Sequential(*downsamples)
|
307 |
+
|
308 |
+
# middle blocks
|
309 |
+
self.middle = nn.Sequential(
|
310 |
+
ResidualBlock(out_dim, out_dim, dropout), AttentionBlock(out_dim),
|
311 |
+
ResidualBlock(out_dim, out_dim, dropout))
|
312 |
+
|
313 |
+
# output blocks
|
314 |
+
self.head = nn.Sequential(
|
315 |
+
RMS_norm(out_dim, images=False), nn.SiLU(),
|
316 |
+
CausalConv3d(out_dim, z_dim, 3, padding=1))
|
317 |
+
|
318 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
319 |
+
if feat_cache is not None:
|
320 |
+
idx = feat_idx[0]
|
321 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
322 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
323 |
+
# cache last frame of last two chunk
|
324 |
+
cache_x = torch.cat([
|
325 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
326 |
+
cache_x.device), cache_x
|
327 |
+
],
|
328 |
+
dim=2)
|
329 |
+
x = self.conv1(x, feat_cache[idx])
|
330 |
+
feat_cache[idx] = cache_x
|
331 |
+
feat_idx[0] += 1
|
332 |
+
else:
|
333 |
+
x = self.conv1(x)
|
334 |
+
|
335 |
+
# downsamples
|
336 |
+
for layer in self.downsamples:
|
337 |
+
if feat_cache is not None:
|
338 |
+
x = layer(x, feat_cache, feat_idx)
|
339 |
+
else:
|
340 |
+
x = layer(x)
|
341 |
+
|
342 |
+
# middle
|
343 |
+
for layer in self.middle:
|
344 |
+
if isinstance(layer, ResidualBlock) and feat_cache is not None:
|
345 |
+
x = layer(x, feat_cache, feat_idx)
|
346 |
+
else:
|
347 |
+
x = layer(x)
|
348 |
+
|
349 |
+
# head
|
350 |
+
for layer in self.head:
|
351 |
+
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
352 |
+
idx = feat_idx[0]
|
353 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
354 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
355 |
+
# cache last frame of last two chunk
|
356 |
+
cache_x = torch.cat([
|
357 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
358 |
+
cache_x.device), cache_x
|
359 |
+
],
|
360 |
+
dim=2)
|
361 |
+
x = layer(x, feat_cache[idx])
|
362 |
+
feat_cache[idx] = cache_x
|
363 |
+
feat_idx[0] += 1
|
364 |
+
else:
|
365 |
+
x = layer(x)
|
366 |
+
return x
|
367 |
+
|
368 |
+
|
369 |
+
class Decoder3d(nn.Module):
|
370 |
+
|
371 |
+
def __init__(self,
|
372 |
+
dim=128,
|
373 |
+
z_dim=4,
|
374 |
+
dim_mult=[1, 2, 4, 4],
|
375 |
+
num_res_blocks=2,
|
376 |
+
attn_scales=[],
|
377 |
+
temperal_upsample=[False, True, True],
|
378 |
+
dropout=0.0):
|
379 |
+
super().__init__()
|
380 |
+
self.dim = dim
|
381 |
+
self.z_dim = z_dim
|
382 |
+
self.dim_mult = dim_mult
|
383 |
+
self.num_res_blocks = num_res_blocks
|
384 |
+
self.attn_scales = attn_scales
|
385 |
+
self.temperal_upsample = temperal_upsample
|
386 |
+
|
387 |
+
# dimensions
|
388 |
+
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
|
389 |
+
scale = 1.0 / 2**(len(dim_mult) - 2)
|
390 |
+
|
391 |
+
# init block
|
392 |
+
self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)
|
393 |
+
|
394 |
+
# middle blocks
|
395 |
+
self.middle = nn.Sequential(
|
396 |
+
ResidualBlock(dims[0], dims[0], dropout), AttentionBlock(dims[0]),
|
397 |
+
ResidualBlock(dims[0], dims[0], dropout))
|
398 |
+
|
399 |
+
# upsample blocks
|
400 |
+
upsamples = []
|
401 |
+
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
402 |
+
# residual (+attention) blocks
|
403 |
+
if i == 1 or i == 2 or i == 3:
|
404 |
+
in_dim = in_dim // 2
|
405 |
+
for _ in range(num_res_blocks + 1):
|
406 |
+
upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
|
407 |
+
if scale in attn_scales:
|
408 |
+
upsamples.append(AttentionBlock(out_dim))
|
409 |
+
in_dim = out_dim
|
410 |
+
|
411 |
+
# upsample block
|
412 |
+
if i != len(dim_mult) - 1:
|
413 |
+
mode = 'upsample3d' if temperal_upsample[i] else 'upsample2d'
|
414 |
+
upsamples.append(Resample(out_dim, mode=mode))
|
415 |
+
scale *= 2.0
|
416 |
+
self.upsamples = nn.Sequential(*upsamples)
|
417 |
+
|
418 |
+
# output blocks
|
419 |
+
self.head = nn.Sequential(
|
420 |
+
RMS_norm(out_dim, images=False), nn.SiLU(),
|
421 |
+
CausalConv3d(out_dim, 3, 3, padding=1))
|
422 |
+
|
423 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
424 |
+
# conv1
|
425 |
+
if feat_cache is not None:
|
426 |
+
idx = feat_idx[0]
|
427 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
428 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
429 |
+
# cache last frame of last two chunk
|
430 |
+
cache_x = torch.cat([
|
431 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
432 |
+
cache_x.device), cache_x
|
433 |
+
],
|
434 |
+
dim=2)
|
435 |
+
x = self.conv1(x, feat_cache[idx])
|
436 |
+
feat_cache[idx] = cache_x
|
437 |
+
feat_idx[0] += 1
|
438 |
+
else:
|
439 |
+
x = self.conv1(x)
|
440 |
+
|
441 |
+
# middle
|
442 |
+
for layer in self.middle:
|
443 |
+
if isinstance(layer, ResidualBlock) and feat_cache is not None:
|
444 |
+
x = layer(x, feat_cache, feat_idx)
|
445 |
+
else:
|
446 |
+
x = layer(x)
|
447 |
+
|
448 |
+
# upsamples
|
449 |
+
for layer in self.upsamples:
|
450 |
+
if feat_cache is not None:
|
451 |
+
x = layer(x, feat_cache, feat_idx)
|
452 |
+
else:
|
453 |
+
x = layer(x)
|
454 |
+
|
455 |
+
# head
|
456 |
+
for layer in self.head:
|
457 |
+
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
458 |
+
idx = feat_idx[0]
|
459 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
460 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
461 |
+
# cache last frame of last two chunk
|
462 |
+
cache_x = torch.cat([
|
463 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
464 |
+
cache_x.device), cache_x
|
465 |
+
],
|
466 |
+
dim=2)
|
467 |
+
x = layer(x, feat_cache[idx])
|
468 |
+
feat_cache[idx] = cache_x
|
469 |
+
feat_idx[0] += 1
|
470 |
+
else:
|
471 |
+
x = layer(x)
|
472 |
+
return x
|
473 |
+
|
474 |
+
|
475 |
+
def count_conv3d(model):
|
476 |
+
count = 0
|
477 |
+
for m in model.modules():
|
478 |
+
if isinstance(m, CausalConv3d):
|
479 |
+
count += 1
|
480 |
+
return count
|
481 |
+
|
482 |
+
|
483 |
+
class WanVAE_(nn.Module):
|
484 |
+
|
485 |
+
def __init__(self,
|
486 |
+
dim=128,
|
487 |
+
z_dim=4,
|
488 |
+
dim_mult=[1, 2, 4, 4],
|
489 |
+
num_res_blocks=2,
|
490 |
+
attn_scales=[],
|
491 |
+
temperal_downsample=[True, True, False],
|
492 |
+
dropout=0.0):
|
493 |
+
super().__init__()
|
494 |
+
self.dim = dim
|
495 |
+
self.z_dim = z_dim
|
496 |
+
self.dim_mult = dim_mult
|
497 |
+
self.num_res_blocks = num_res_blocks
|
498 |
+
self.attn_scales = attn_scales
|
499 |
+
self.temperal_downsample = temperal_downsample
|
500 |
+
self.temperal_upsample = temperal_downsample[::-1]
|
501 |
+
|
502 |
+
# modules
|
503 |
+
self.encoder = Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks,
|
504 |
+
attn_scales, self.temperal_downsample, dropout)
|
505 |
+
self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
|
506 |
+
self.conv2 = CausalConv3d(z_dim, z_dim, 1)
|
507 |
+
self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks,
|
508 |
+
attn_scales, self.temperal_upsample, dropout)
|
509 |
+
|
510 |
+
def forward(self, x):
|
511 |
+
mu, log_var = self.encode(x)
|
512 |
+
z = self.reparameterize(mu, log_var)
|
513 |
+
x_recon = self.decode(z)
|
514 |
+
return x_recon, mu, log_var
|
515 |
+
|
516 |
+
def encode(self, x, scale):
|
517 |
+
self.clear_cache()
|
518 |
+
# cache
|
519 |
+
t = x.shape[2]
|
520 |
+
iter_ = 1 + (t - 1) // 4
|
521 |
+
# 对encode输入的x,按时间拆分为1、4、4、4....
|
522 |
+
for i in range(iter_):
|
523 |
+
self._enc_conv_idx = [0]
|
524 |
+
if i == 0:
|
525 |
+
out = self.encoder(
|
526 |
+
x[:, :, :1, :, :],
|
527 |
+
feat_cache=self._enc_feat_map,
|
528 |
+
feat_idx=self._enc_conv_idx)
|
529 |
+
else:
|
530 |
+
out_ = self.encoder(
|
531 |
+
x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :],
|
532 |
+
feat_cache=self._enc_feat_map,
|
533 |
+
feat_idx=self._enc_conv_idx)
|
534 |
+
out = torch.cat([out, out_], 2)
|
535 |
+
mu, log_var = self.conv1(out).chunk(2, dim=1)
|
536 |
+
if isinstance(scale[0], torch.Tensor):
|
537 |
+
mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(
|
538 |
+
1, self.z_dim, 1, 1, 1)
|
539 |
+
else:
|
540 |
+
mu = (mu - scale[0]) * scale[1]
|
541 |
+
self.clear_cache()
|
542 |
+
return mu
|
543 |
+
|
544 |
+
def decode(self, z, scale):
|
545 |
+
self.clear_cache()
|
546 |
+
# z: [b,c,t,h,w]
|
547 |
+
if isinstance(scale[0], torch.Tensor):
|
548 |
+
z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(
|
549 |
+
1, self.z_dim, 1, 1, 1)
|
550 |
+
else:
|
551 |
+
z = z / scale[1] + scale[0]
|
552 |
+
iter_ = z.shape[2]
|
553 |
+
x = self.conv2(z)
|
554 |
+
for i in range(iter_):
|
555 |
+
self._conv_idx = [0]
|
556 |
+
if i == 0:
|
557 |
+
out = self.decoder(
|
558 |
+
x[:, :, i:i + 1, :, :],
|
559 |
+
feat_cache=self._feat_map,
|
560 |
+
feat_idx=self._conv_idx)
|
561 |
+
else:
|
562 |
+
out_ = self.decoder(
|
563 |
+
x[:, :, i:i + 1, :, :],
|
564 |
+
feat_cache=self._feat_map,
|
565 |
+
feat_idx=self._conv_idx)
|
566 |
+
out = torch.cat([out, out_], 2)
|
567 |
+
self.clear_cache()
|
568 |
+
return out
|
569 |
+
|
570 |
+
def reparameterize(self, mu, log_var):
|
571 |
+
std = torch.exp(0.5 * log_var)
|
572 |
+
eps = torch.randn_like(std)
|
573 |
+
return eps * std + mu
|
574 |
+
|
575 |
+
def sample(self, imgs, deterministic=False):
|
576 |
+
mu, log_var = self.encode(imgs)
|
577 |
+
if deterministic:
|
578 |
+
return mu
|
579 |
+
std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
|
580 |
+
return mu + std * torch.randn_like(std)
|
581 |
+
|
582 |
+
def clear_cache(self):
|
583 |
+
self._conv_num = count_conv3d(self.decoder)
|
584 |
+
self._conv_idx = [0]
|
585 |
+
self._feat_map = [None] * self._conv_num
|
586 |
+
# cache encode
|
587 |
+
self._enc_conv_num = count_conv3d(self.encoder)
|
588 |
+
self._enc_conv_idx = [0]
|
589 |
+
self._enc_feat_map = [None] * self._enc_conv_num
|
590 |
+
|
591 |
+
|
592 |
+
def _video_vae(pretrained_path=None, z_dim=None, device='cpu', **kwargs):
|
593 |
+
"""
|
594 |
+
Autoencoder3d adapted from Stable Diffusion 1.x, 2.x and XL.
|
595 |
+
"""
|
596 |
+
# params
|
597 |
+
cfg = dict(
|
598 |
+
dim=96,
|
599 |
+
z_dim=z_dim,
|
600 |
+
dim_mult=[1, 2, 4, 4],
|
601 |
+
num_res_blocks=2,
|
602 |
+
attn_scales=[],
|
603 |
+
temperal_downsample=[False, True, True],
|
604 |
+
dropout=0.0)
|
605 |
+
cfg.update(**kwargs)
|
606 |
+
|
607 |
+
# init model
|
608 |
+
with torch.device('meta'):
|
609 |
+
model = WanVAE_(**cfg)
|
610 |
+
|
611 |
+
# load checkpoint
|
612 |
+
logging.info(f'loading {pretrained_path}')
|
613 |
+
model.load_state_dict(
|
614 |
+
torch.load(pretrained_path, map_location=device, weights_only=True), assign=True)
|
615 |
+
|
616 |
+
return model
|
617 |
+
|
618 |
+
|
619 |
+
class WanVAE:
|
620 |
+
|
621 |
+
def __init__(self,
|
622 |
+
z_dim=16,
|
623 |
+
vae_pth='cache/vae_step_411000.pth',
|
624 |
+
dtype=torch.float,
|
625 |
+
device="cuda"):
|
626 |
+
self.dtype = dtype
|
627 |
+
self.device = device
|
628 |
+
|
629 |
+
mean = [
|
630 |
+
-0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508,
|
631 |
+
0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921
|
632 |
+
]
|
633 |
+
std = [
|
634 |
+
2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743,
|
635 |
+
3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160
|
636 |
+
]
|
637 |
+
self.mean = torch.tensor(mean, dtype=dtype, device=device)
|
638 |
+
self.std = torch.tensor(std, dtype=dtype, device=device)
|
639 |
+
self.scale = [self.mean, 1.0 / self.std]
|
640 |
+
|
641 |
+
# init model
|
642 |
+
self.model = _video_vae(
|
643 |
+
pretrained_path=vae_pth,
|
644 |
+
z_dim=z_dim,
|
645 |
+
).eval().requires_grad_(False).to(device)
|
646 |
+
|
647 |
+
def encode(self, videos):
|
648 |
+
"""
|
649 |
+
videos: A list of videos each with shape [C, T, H, W].
|
650 |
+
"""
|
651 |
+
with amp.autocast("cuda", dtype=self.dtype):
|
652 |
+
return [
|
653 |
+
self.model.encode(u.unsqueeze(0), self.scale).float().squeeze(0)
|
654 |
+
for u in videos
|
655 |
+
]
|
656 |
+
|
657 |
+
def decode(self, zs):
|
658 |
+
with amp.autocast("cuda", dtype=self.dtype):
|
659 |
+
return [
|
660 |
+
self.model.decode(u.unsqueeze(0),
|
661 |
+
self.scale).float().clamp_(-1, 1).squeeze(0)
|
662 |
+
for u in zs
|
663 |
+
]
|
wan/modules/xlm_roberta.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from transformers.models.xlm_roberta.modeling_xlm_roberta
|
2 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
__all__ = ['XLMRoberta', 'xlm_roberta_large']
|
8 |
+
|
9 |
+
|
10 |
+
class SelfAttention(nn.Module):
|
11 |
+
|
12 |
+
def __init__(self, dim, num_heads, dropout=0.1, eps=1e-5):
|
13 |
+
assert dim % num_heads == 0
|
14 |
+
super().__init__()
|
15 |
+
self.dim = dim
|
16 |
+
self.num_heads = num_heads
|
17 |
+
self.head_dim = dim // num_heads
|
18 |
+
self.eps = eps
|
19 |
+
|
20 |
+
# layers
|
21 |
+
self.q = nn.Linear(dim, dim)
|
22 |
+
self.k = nn.Linear(dim, dim)
|
23 |
+
self.v = nn.Linear(dim, dim)
|
24 |
+
self.o = nn.Linear(dim, dim)
|
25 |
+
self.dropout = nn.Dropout(dropout)
|
26 |
+
|
27 |
+
def forward(self, x, mask):
|
28 |
+
"""
|
29 |
+
x: [B, L, C].
|
30 |
+
"""
|
31 |
+
b, s, c, n, d = *x.size(), self.num_heads, self.head_dim
|
32 |
+
|
33 |
+
# compute query, key, value
|
34 |
+
q = self.q(x).reshape(b, s, n, d).permute(0, 2, 1, 3)
|
35 |
+
k = self.k(x).reshape(b, s, n, d).permute(0, 2, 1, 3)
|
36 |
+
v = self.v(x).reshape(b, s, n, d).permute(0, 2, 1, 3)
|
37 |
+
|
38 |
+
# compute attention
|
39 |
+
p = self.dropout.p if self.training else 0.0
|
40 |
+
x = F.scaled_dot_product_attention(q, k, v, mask, p)
|
41 |
+
x = x.permute(0, 2, 1, 3).reshape(b, s, c)
|
42 |
+
|
43 |
+
# output
|
44 |
+
x = self.o(x)
|
45 |
+
x = self.dropout(x)
|
46 |
+
return x
|
47 |
+
|
48 |
+
|
49 |
+
class AttentionBlock(nn.Module):
|
50 |
+
|
51 |
+
def __init__(self, dim, num_heads, post_norm, dropout=0.1, eps=1e-5):
|
52 |
+
super().__init__()
|
53 |
+
self.dim = dim
|
54 |
+
self.num_heads = num_heads
|
55 |
+
self.post_norm = post_norm
|
56 |
+
self.eps = eps
|
57 |
+
|
58 |
+
# layers
|
59 |
+
self.attn = SelfAttention(dim, num_heads, dropout, eps)
|
60 |
+
self.norm1 = nn.LayerNorm(dim, eps=eps)
|
61 |
+
self.ffn = nn.Sequential(
|
62 |
+
nn.Linear(dim, dim * 4), nn.GELU(), nn.Linear(dim * 4, dim),
|
63 |
+
nn.Dropout(dropout))
|
64 |
+
self.norm2 = nn.LayerNorm(dim, eps=eps)
|
65 |
+
|
66 |
+
def forward(self, x, mask):
|
67 |
+
if self.post_norm:
|
68 |
+
x = self.norm1(x + self.attn(x, mask))
|
69 |
+
x = self.norm2(x + self.ffn(x))
|
70 |
+
else:
|
71 |
+
x = x + self.attn(self.norm1(x), mask)
|
72 |
+
x = x + self.ffn(self.norm2(x))
|
73 |
+
return x
|
74 |
+
|
75 |
+
|
76 |
+
class XLMRoberta(nn.Module):
|
77 |
+
"""
|
78 |
+
XLMRobertaModel with no pooler and no LM head.
|
79 |
+
"""
|
80 |
+
|
81 |
+
def __init__(self,
|
82 |
+
vocab_size=250002,
|
83 |
+
max_seq_len=514,
|
84 |
+
type_size=1,
|
85 |
+
pad_id=1,
|
86 |
+
dim=1024,
|
87 |
+
num_heads=16,
|
88 |
+
num_layers=24,
|
89 |
+
post_norm=True,
|
90 |
+
dropout=0.1,
|
91 |
+
eps=1e-5):
|
92 |
+
super().__init__()
|
93 |
+
self.vocab_size = vocab_size
|
94 |
+
self.max_seq_len = max_seq_len
|
95 |
+
self.type_size = type_size
|
96 |
+
self.pad_id = pad_id
|
97 |
+
self.dim = dim
|
98 |
+
self.num_heads = num_heads
|
99 |
+
self.num_layers = num_layers
|
100 |
+
self.post_norm = post_norm
|
101 |
+
self.eps = eps
|
102 |
+
|
103 |
+
# embeddings
|
104 |
+
self.token_embedding = nn.Embedding(vocab_size, dim, padding_idx=pad_id)
|
105 |
+
self.type_embedding = nn.Embedding(type_size, dim)
|
106 |
+
self.pos_embedding = nn.Embedding(max_seq_len, dim, padding_idx=pad_id)
|
107 |
+
self.dropout = nn.Dropout(dropout)
|
108 |
+
|
109 |
+
# blocks
|
110 |
+
self.blocks = nn.ModuleList([
|
111 |
+
AttentionBlock(dim, num_heads, post_norm, dropout, eps)
|
112 |
+
for _ in range(num_layers)
|
113 |
+
])
|
114 |
+
|
115 |
+
# norm layer
|
116 |
+
self.norm = nn.LayerNorm(dim, eps=eps)
|
117 |
+
|
118 |
+
def forward(self, ids):
|
119 |
+
"""
|
120 |
+
ids: [B, L] of torch.LongTensor.
|
121 |
+
"""
|
122 |
+
b, s = ids.shape
|
123 |
+
mask = ids.ne(self.pad_id).long()
|
124 |
+
|
125 |
+
# embeddings
|
126 |
+
x = self.token_embedding(ids) + \
|
127 |
+
self.type_embedding(torch.zeros_like(ids)) + \
|
128 |
+
self.pos_embedding(self.pad_id + torch.cumsum(mask, dim=1) * mask)
|
129 |
+
if self.post_norm:
|
130 |
+
x = self.norm(x)
|
131 |
+
x = self.dropout(x)
|
132 |
+
|
133 |
+
# blocks
|
134 |
+
mask = torch.where(
|
135 |
+
mask.view(b, 1, 1, s).gt(0), 0.0,
|
136 |
+
torch.finfo(x.dtype).min)
|
137 |
+
for block in self.blocks:
|
138 |
+
x = block(x, mask)
|
139 |
+
|
140 |
+
# output
|
141 |
+
if not self.post_norm:
|
142 |
+
x = self.norm(x)
|
143 |
+
return x
|
144 |
+
|
145 |
+
|
146 |
+
def xlm_roberta_large(pretrained=False,
|
147 |
+
return_tokenizer=False,
|
148 |
+
device='cpu',
|
149 |
+
**kwargs):
|
150 |
+
"""
|
151 |
+
XLMRobertaLarge adapted from Huggingface.
|
152 |
+
"""
|
153 |
+
# params
|
154 |
+
cfg = dict(
|
155 |
+
vocab_size=250002,
|
156 |
+
max_seq_len=514,
|
157 |
+
type_size=1,
|
158 |
+
pad_id=1,
|
159 |
+
dim=1024,
|
160 |
+
num_heads=16,
|
161 |
+
num_layers=24,
|
162 |
+
post_norm=True,
|
163 |
+
dropout=0.1,
|
164 |
+
eps=1e-5)
|
165 |
+
cfg.update(**kwargs)
|
166 |
+
|
167 |
+
# init a model on device
|
168 |
+
with torch.device(device):
|
169 |
+
model = XLMRoberta(**cfg)
|
170 |
+
return model
|
wan/text2video.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import gc
|
3 |
+
import logging
|
4 |
+
import math
|
5 |
+
import os
|
6 |
+
import random
|
7 |
+
import sys
|
8 |
+
import types
|
9 |
+
from contextlib import contextmanager
|
10 |
+
from functools import partial
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.cuda.amp as amp
|
14 |
+
import torch.distributed as dist
|
15 |
+
from tqdm import tqdm
|
16 |
+
|
17 |
+
from .distributed.fsdp import shard_model
|
18 |
+
from .modules.model import WanModel
|
19 |
+
from .modules.t5 import T5EncoderModel
|
20 |
+
from .modules.vae import WanVAE
|
21 |
+
from .utils.fm_solvers import (
|
22 |
+
FlowDPMSolverMultistepScheduler,
|
23 |
+
get_sampling_sigmas,
|
24 |
+
retrieve_timesteps,
|
25 |
+
)
|
26 |
+
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
27 |
+
|
28 |
+
|
29 |
+
class WanT2V:
|
30 |
+
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
config,
|
34 |
+
checkpoint_dir,
|
35 |
+
device_id=0,
|
36 |
+
rank=0,
|
37 |
+
t5_fsdp=False,
|
38 |
+
dit_fsdp=False,
|
39 |
+
use_usp=False,
|
40 |
+
t5_cpu=False,
|
41 |
+
):
|
42 |
+
r"""
|
43 |
+
Initializes the Wan text-to-video generation model components.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
config (EasyDict):
|
47 |
+
Object containing model parameters initialized from config.py
|
48 |
+
checkpoint_dir (`str`):
|
49 |
+
Path to directory containing model checkpoints
|
50 |
+
device_id (`int`, *optional*, defaults to 0):
|
51 |
+
Id of target GPU device
|
52 |
+
rank (`int`, *optional*, defaults to 0):
|
53 |
+
Process rank for distributed training
|
54 |
+
t5_fsdp (`bool`, *optional*, defaults to False):
|
55 |
+
Enable FSDP sharding for T5 model
|
56 |
+
dit_fsdp (`bool`, *optional*, defaults to False):
|
57 |
+
Enable FSDP sharding for DiT model
|
58 |
+
use_usp (`bool`, *optional*, defaults to False):
|
59 |
+
Enable distribution strategy of USP.
|
60 |
+
t5_cpu (`bool`, *optional*, defaults to False):
|
61 |
+
Whether to place T5 model on CPU. Only works without t5_fsdp.
|
62 |
+
"""
|
63 |
+
self.device = torch.device(f"cuda:{device_id}")
|
64 |
+
self.config = config
|
65 |
+
self.rank = rank
|
66 |
+
self.t5_cpu = t5_cpu
|
67 |
+
|
68 |
+
self.num_train_timesteps = config.num_train_timesteps
|
69 |
+
self.param_dtype = config.param_dtype
|
70 |
+
|
71 |
+
shard_fn = partial(shard_model, device_id=device_id)
|
72 |
+
self.text_encoder = T5EncoderModel(
|
73 |
+
text_len=config.text_len,
|
74 |
+
dtype=config.t5_dtype,
|
75 |
+
device=torch.device('cpu'),
|
76 |
+
checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
|
77 |
+
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
|
78 |
+
shard_fn=shard_fn if t5_fsdp else None)
|
79 |
+
|
80 |
+
self.vae_stride = config.vae_stride
|
81 |
+
self.patch_size = config.patch_size
|
82 |
+
self.vae = WanVAE(
|
83 |
+
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
|
84 |
+
device=self.device)
|
85 |
+
|
86 |
+
logging.info(f"Creating WanModel from {checkpoint_dir}")
|
87 |
+
self.model = WanModel.from_pretrained(checkpoint_dir)
|
88 |
+
self.model.eval().requires_grad_(False)
|
89 |
+
|
90 |
+
if use_usp:
|
91 |
+
from xfuser.core.distributed import get_sequence_parallel_world_size
|
92 |
+
|
93 |
+
from .distributed.xdit_context_parallel import (
|
94 |
+
usp_attn_forward,
|
95 |
+
usp_dit_forward,
|
96 |
+
)
|
97 |
+
for block in self.model.blocks:
|
98 |
+
block.self_attn.forward = types.MethodType(
|
99 |
+
usp_attn_forward, block.self_attn)
|
100 |
+
self.model.forward = types.MethodType(usp_dit_forward, self.model)
|
101 |
+
self.sp_size = get_sequence_parallel_world_size()
|
102 |
+
else:
|
103 |
+
self.sp_size = 1
|
104 |
+
|
105 |
+
if dist.is_initialized():
|
106 |
+
dist.barrier()
|
107 |
+
if dit_fsdp:
|
108 |
+
self.model = shard_fn(self.model)
|
109 |
+
else:
|
110 |
+
self.model.to(self.device)
|
111 |
+
|
112 |
+
self.sample_neg_prompt = config.sample_neg_prompt
|
113 |
+
|
114 |
+
def generate(self,
|
115 |
+
input_prompt,
|
116 |
+
size=(1280, 720),
|
117 |
+
frame_num=81,
|
118 |
+
shift=5.0,
|
119 |
+
sample_solver='unipc',
|
120 |
+
sampling_steps=50,
|
121 |
+
guide_scale=5.0,
|
122 |
+
n_prompt="",
|
123 |
+
seed=-1,
|
124 |
+
offload_model=True):
|
125 |
+
r"""
|
126 |
+
Generates video frames from text prompt using diffusion process.
|
127 |
+
|
128 |
+
Args:
|
129 |
+
input_prompt (`str`):
|
130 |
+
Text prompt for content generation
|
131 |
+
size (tupele[`int`], *optional*, defaults to (1280,720)):
|
132 |
+
Controls video resolution, (width,height).
|
133 |
+
frame_num (`int`, *optional*, defaults to 81):
|
134 |
+
How many frames to sample from a video. The number should be 4n+1
|
135 |
+
shift (`float`, *optional*, defaults to 5.0):
|
136 |
+
Noise schedule shift parameter. Affects temporal dynamics
|
137 |
+
sample_solver (`str`, *optional*, defaults to 'unipc'):
|
138 |
+
Solver used to sample the video.
|
139 |
+
sampling_steps (`int`, *optional*, defaults to 40):
|
140 |
+
Number of diffusion sampling steps. Higher values improve quality but slow generation
|
141 |
+
guide_scale (`float`, *optional*, defaults 5.0):
|
142 |
+
Classifier-free guidance scale. Controls prompt adherence vs. creativity
|
143 |
+
n_prompt (`str`, *optional*, defaults to ""):
|
144 |
+
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
|
145 |
+
seed (`int`, *optional*, defaults to -1):
|
146 |
+
Random seed for noise generation. If -1, use random seed.
|
147 |
+
offload_model (`bool`, *optional*, defaults to True):
|
148 |
+
If True, offloads models to CPU during generation to save VRAM
|
149 |
+
|
150 |
+
Returns:
|
151 |
+
torch.Tensor:
|
152 |
+
Generated video frames tensor. Dimensions: (C, N H, W) where:
|
153 |
+
- C: Color channels (3 for RGB)
|
154 |
+
- N: Number of frames (81)
|
155 |
+
- H: Frame height (from size)
|
156 |
+
- W: Frame width from size)
|
157 |
+
"""
|
158 |
+
# preprocess
|
159 |
+
F = frame_num
|
160 |
+
target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
|
161 |
+
size[1] // self.vae_stride[1],
|
162 |
+
size[0] // self.vae_stride[2])
|
163 |
+
|
164 |
+
seq_len = math.ceil((target_shape[2] * target_shape[3]) /
|
165 |
+
(self.patch_size[1] * self.patch_size[2]) *
|
166 |
+
target_shape[1] / self.sp_size) * self.sp_size
|
167 |
+
|
168 |
+
if n_prompt == "":
|
169 |
+
n_prompt = self.sample_neg_prompt
|
170 |
+
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
|
171 |
+
seed_g = torch.Generator(device=self.device)
|
172 |
+
seed_g.manual_seed(seed)
|
173 |
+
|
174 |
+
if not self.t5_cpu:
|
175 |
+
self.text_encoder.model.to(self.device)
|
176 |
+
context = self.text_encoder([input_prompt], self.device)
|
177 |
+
context_null = self.text_encoder([n_prompt], self.device)
|
178 |
+
if offload_model:
|
179 |
+
self.text_encoder.model.cpu()
|
180 |
+
else:
|
181 |
+
context = self.text_encoder([input_prompt], torch.device('cpu'))
|
182 |
+
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
|
183 |
+
context = [t.to(self.device) for t in context]
|
184 |
+
context_null = [t.to(self.device) for t in context_null]
|
185 |
+
|
186 |
+
noise = [
|
187 |
+
torch.randn(
|
188 |
+
target_shape[0],
|
189 |
+
target_shape[1],
|
190 |
+
target_shape[2],
|
191 |
+
target_shape[3],
|
192 |
+
dtype=torch.float32,
|
193 |
+
device=self.device,
|
194 |
+
generator=seed_g)
|
195 |
+
]
|
196 |
+
|
197 |
+
@contextmanager
|
198 |
+
def noop_no_sync():
|
199 |
+
yield
|
200 |
+
|
201 |
+
no_sync = getattr(self.model, 'no_sync', noop_no_sync)
|
202 |
+
|
203 |
+
# evaluation mode
|
204 |
+
with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():
|
205 |
+
|
206 |
+
if sample_solver == 'unipc':
|
207 |
+
sample_scheduler = FlowUniPCMultistepScheduler(
|
208 |
+
num_train_timesteps=self.num_train_timesteps,
|
209 |
+
shift=1,
|
210 |
+
use_dynamic_shifting=False)
|
211 |
+
sample_scheduler.set_timesteps(
|
212 |
+
sampling_steps, device=self.device, shift=shift)
|
213 |
+
timesteps = sample_scheduler.timesteps
|
214 |
+
elif sample_solver == 'dpm++':
|
215 |
+
sample_scheduler = FlowDPMSolverMultistepScheduler(
|
216 |
+
num_train_timesteps=self.num_train_timesteps,
|
217 |
+
shift=1,
|
218 |
+
use_dynamic_shifting=False)
|
219 |
+
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
|
220 |
+
timesteps, _ = retrieve_timesteps(
|
221 |
+
sample_scheduler,
|
222 |
+
device=self.device,
|
223 |
+
sigmas=sampling_sigmas)
|
224 |
+
else:
|
225 |
+
raise NotImplementedError("Unsupported solver.")
|
226 |
+
|
227 |
+
# sample videos
|
228 |
+
latents = noise
|
229 |
+
|
230 |
+
arg_c = {'context': context, 'seq_len': seq_len}
|
231 |
+
arg_null = {'context': context_null, 'seq_len': seq_len}
|
232 |
+
|
233 |
+
for _, t in enumerate(tqdm(timesteps)):
|
234 |
+
latent_model_input = latents
|
235 |
+
timestep = [t]
|
236 |
+
|
237 |
+
timestep = torch.stack(timestep)
|
238 |
+
|
239 |
+
self.model.to(self.device)
|
240 |
+
noise_pred_cond = self.model(
|
241 |
+
latent_model_input, t=timestep, **arg_c)[0]
|
242 |
+
noise_pred_uncond = self.model(
|
243 |
+
latent_model_input, t=timestep, **arg_null)[0]
|
244 |
+
|
245 |
+
noise_pred = noise_pred_uncond + guide_scale * (
|
246 |
+
noise_pred_cond - noise_pred_uncond)
|
247 |
+
|
248 |
+
temp_x0 = sample_scheduler.step(
|
249 |
+
noise_pred.unsqueeze(0),
|
250 |
+
t,
|
251 |
+
latents[0].unsqueeze(0),
|
252 |
+
return_dict=False,
|
253 |
+
generator=seed_g)[0]
|
254 |
+
latents = [temp_x0.squeeze(0)]
|
255 |
+
|
256 |
+
x0 = latents
|
257 |
+
if offload_model:
|
258 |
+
self.model.cpu()
|
259 |
+
torch.cuda.empty_cache()
|
260 |
+
if self.rank == 0:
|
261 |
+
videos = self.vae.decode(x0)
|
262 |
+
|
263 |
+
del noise, latents
|
264 |
+
del sample_scheduler
|
265 |
+
if offload_model:
|
266 |
+
gc.collect()
|
267 |
+
torch.cuda.synchronize()
|
268 |
+
if dist.is_initialized():
|
269 |
+
dist.barrier()
|
270 |
+
|
271 |
+
return videos[0] if self.rank == 0 else None
|
wan/utils/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .fm_solvers import (FlowDPMSolverMultistepScheduler, get_sampling_sigmas,
|
2 |
+
retrieve_timesteps)
|
3 |
+
from .fm_solvers_unipc import FlowUniPCMultistepScheduler
|
4 |
+
|
5 |
+
__all__ = [
|
6 |
+
'HuggingfaceTokenizer', 'get_sampling_sigmas', 'retrieve_timesteps',
|
7 |
+
'FlowDPMSolverMultistepScheduler', 'FlowUniPCMultistepScheduler'
|
8 |
+
]
|
wan/utils/fm_solvers.py
ADDED
@@ -0,0 +1,934 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copied from https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
|
2 |
+
# Convert dpm solver for flow matching
|
3 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
4 |
+
|
5 |
+
import inspect
|
6 |
+
import math
|
7 |
+
from typing import List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
12 |
+
from diffusers.schedulers.scheduling_utils import (KarrasDiffusionSchedulers,
|
13 |
+
SchedulerMixin,
|
14 |
+
SchedulerOutput)
|
15 |
+
from diffusers.utils import deprecate, is_scipy_available
|
16 |
+
from diffusers.utils.torch_utils import randn_tensor
|
17 |
+
|
18 |
+
if is_scipy_available():
|
19 |
+
pass
|
20 |
+
|
21 |
+
|
22 |
+
def get_sampling_sigmas(sampling_steps, shift):
|
23 |
+
sigma = np.linspace(1, 0, sampling_steps + 1)[:sampling_steps]
|
24 |
+
sigma = (shift * sigma / (1 + (shift - 1) * sigma))
|
25 |
+
|
26 |
+
return sigma
|
27 |
+
|
28 |
+
|
29 |
+
def retrieve_timesteps(
|
30 |
+
scheduler,
|
31 |
+
num_inference_steps=None,
|
32 |
+
device=None,
|
33 |
+
timesteps=None,
|
34 |
+
sigmas=None,
|
35 |
+
**kwargs,
|
36 |
+
):
|
37 |
+
if timesteps is not None and sigmas is not None:
|
38 |
+
raise ValueError(
|
39 |
+
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
|
40 |
+
)
|
41 |
+
if timesteps is not None:
|
42 |
+
accepts_timesteps = "timesteps" in set(
|
43 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys())
|
44 |
+
if not accepts_timesteps:
|
45 |
+
raise ValueError(
|
46 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
47 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
48 |
+
)
|
49 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
50 |
+
timesteps = scheduler.timesteps
|
51 |
+
num_inference_steps = len(timesteps)
|
52 |
+
elif sigmas is not None:
|
53 |
+
accept_sigmas = "sigmas" in set(
|
54 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys())
|
55 |
+
if not accept_sigmas:
|
56 |
+
raise ValueError(
|
57 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
58 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
59 |
+
)
|
60 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
61 |
+
timesteps = scheduler.timesteps
|
62 |
+
num_inference_steps = len(timesteps)
|
63 |
+
else:
|
64 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
65 |
+
timesteps = scheduler.timesteps
|
66 |
+
return timesteps, num_inference_steps
|
67 |
+
|
68 |
+
|
69 |
+
class FlowDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
70 |
+
"""
|
71 |
+
`FlowDPMSolverMultistepScheduler` is a fast dedicated high-order solver for diffusion ODEs.
|
72 |
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
73 |
+
methods the library implements for all schedulers such as loading and saving.
|
74 |
+
Args:
|
75 |
+
num_train_timesteps (`int`, defaults to 1000):
|
76 |
+
The number of diffusion steps to train the model. This determines the resolution of the diffusion process.
|
77 |
+
solver_order (`int`, defaults to 2):
|
78 |
+
The DPMSolver order which can be `1`, `2`, or `3`. It is recommended to use `solver_order=2` for guided
|
79 |
+
sampling, and `solver_order=3` for unconditional sampling. This affects the number of model outputs stored
|
80 |
+
and used in multistep updates.
|
81 |
+
prediction_type (`str`, defaults to "flow_prediction"):
|
82 |
+
Prediction type of the scheduler function; must be `flow_prediction` for this scheduler, which predicts
|
83 |
+
the flow of the diffusion process.
|
84 |
+
shift (`float`, *optional*, defaults to 1.0):
|
85 |
+
A factor used to adjust the sigmas in the noise schedule. It modifies the step sizes during the sampling
|
86 |
+
process.
|
87 |
+
use_dynamic_shifting (`bool`, defaults to `False`):
|
88 |
+
Whether to apply dynamic shifting to the timesteps based on image resolution. If `True`, the shifting is
|
89 |
+
applied on the fly.
|
90 |
+
thresholding (`bool`, defaults to `False`):
|
91 |
+
Whether to use the "dynamic thresholding" method. This method adjusts the predicted sample to prevent
|
92 |
+
saturation and improve photorealism.
|
93 |
+
dynamic_thresholding_ratio (`float`, defaults to 0.995):
|
94 |
+
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
|
95 |
+
sample_max_value (`float`, defaults to 1.0):
|
96 |
+
The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
|
97 |
+
`algorithm_type="dpmsolver++"`.
|
98 |
+
algorithm_type (`str`, defaults to `dpmsolver++`):
|
99 |
+
Algorithm type for the solver; can be `dpmsolver`, `dpmsolver++`, `sde-dpmsolver` or `sde-dpmsolver++`. The
|
100 |
+
`dpmsolver` type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927)
|
101 |
+
paper, and the `dpmsolver++` type implements the algorithms in the
|
102 |
+
[DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to use `dpmsolver++` or
|
103 |
+
`sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion.
|
104 |
+
solver_type (`str`, defaults to `midpoint`):
|
105 |
+
Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
|
106 |
+
sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
|
107 |
+
lower_order_final (`bool`, defaults to `True`):
|
108 |
+
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
|
109 |
+
stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
|
110 |
+
euler_at_final (`bool`, defaults to `False`):
|
111 |
+
Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail
|
112 |
+
richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
|
113 |
+
steps, but sometimes may result in blurring.
|
114 |
+
final_sigmas_type (`str`, *optional*, defaults to "zero"):
|
115 |
+
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
|
116 |
+
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
|
117 |
+
lambda_min_clipped (`float`, defaults to `-inf`):
|
118 |
+
Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
|
119 |
+
cosine (`squaredcos_cap_v2`) noise schedule.
|
120 |
+
variance_type (`str`, *optional*):
|
121 |
+
Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
|
122 |
+
contains the predicted Gaussian variance.
|
123 |
+
"""
|
124 |
+
|
125 |
+
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
126 |
+
order = 1
|
127 |
+
|
128 |
+
@register_to_config
|
129 |
+
def __init__(
|
130 |
+
self,
|
131 |
+
num_train_timesteps: int = 1000,
|
132 |
+
solver_order: int = 2,
|
133 |
+
prediction_type: str = "flow_prediction",
|
134 |
+
shift: Optional[float] = 1.0,
|
135 |
+
use_dynamic_shifting=False,
|
136 |
+
thresholding: bool = False,
|
137 |
+
dynamic_thresholding_ratio: float = 0.995,
|
138 |
+
sample_max_value: float = 1.0,
|
139 |
+
algorithm_type: str = "dpmsolver++",
|
140 |
+
solver_type: str = "midpoint",
|
141 |
+
lower_order_final: bool = True,
|
142 |
+
euler_at_final: bool = False,
|
143 |
+
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
|
144 |
+
lambda_min_clipped: float = -float("inf"),
|
145 |
+
variance_type: Optional[str] = None,
|
146 |
+
invert_sigmas: bool = False,
|
147 |
+
):
|
148 |
+
if algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
|
149 |
+
deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
|
150 |
+
deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0",
|
151 |
+
deprecation_message)
|
152 |
+
|
153 |
+
# settings for DPM-Solver
|
154 |
+
if algorithm_type not in [
|
155 |
+
"dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"
|
156 |
+
]:
|
157 |
+
if algorithm_type == "deis":
|
158 |
+
self.register_to_config(algorithm_type="dpmsolver++")
|
159 |
+
else:
|
160 |
+
raise NotImplementedError(
|
161 |
+
f"{algorithm_type} is not implemented for {self.__class__}")
|
162 |
+
|
163 |
+
if solver_type not in ["midpoint", "heun"]:
|
164 |
+
if solver_type in ["logrho", "bh1", "bh2"]:
|
165 |
+
self.register_to_config(solver_type="midpoint")
|
166 |
+
else:
|
167 |
+
raise NotImplementedError(
|
168 |
+
f"{solver_type} is not implemented for {self.__class__}")
|
169 |
+
|
170 |
+
if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"
|
171 |
+
] and final_sigmas_type == "zero":
|
172 |
+
raise ValueError(
|
173 |
+
f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please choose `sigma_min` instead."
|
174 |
+
)
|
175 |
+
|
176 |
+
# setable values
|
177 |
+
self.num_inference_steps = None
|
178 |
+
alphas = np.linspace(1, 1 / num_train_timesteps,
|
179 |
+
num_train_timesteps)[::-1].copy()
|
180 |
+
sigmas = 1.0 - alphas
|
181 |
+
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32)
|
182 |
+
|
183 |
+
if not use_dynamic_shifting:
|
184 |
+
# when use_dynamic_shifting is True, we apply the timestep shifting on the fly based on the image resolution
|
185 |
+
sigmas = shift * sigmas / (1 +
|
186 |
+
(shift - 1) * sigmas) # pyright: ignore
|
187 |
+
|
188 |
+
self.sigmas = sigmas
|
189 |
+
self.timesteps = sigmas * num_train_timesteps
|
190 |
+
|
191 |
+
self.model_outputs = [None] * solver_order
|
192 |
+
self.lower_order_nums = 0
|
193 |
+
self._step_index = None
|
194 |
+
self._begin_index = None
|
195 |
+
|
196 |
+
# self.sigmas = self.sigmas.to(
|
197 |
+
# "cpu") # to avoid too much CPU/GPU communication
|
198 |
+
self.sigma_min = self.sigmas[-1].item()
|
199 |
+
self.sigma_max = self.sigmas[0].item()
|
200 |
+
|
201 |
+
@property
|
202 |
+
def step_index(self):
|
203 |
+
"""
|
204 |
+
The index counter for current timestep. It will increase 1 after each scheduler step.
|
205 |
+
"""
|
206 |
+
return self._step_index
|
207 |
+
|
208 |
+
@property
|
209 |
+
def begin_index(self):
|
210 |
+
"""
|
211 |
+
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
212 |
+
"""
|
213 |
+
return self._begin_index
|
214 |
+
|
215 |
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
216 |
+
def set_begin_index(self, begin_index: int = 0):
|
217 |
+
"""
|
218 |
+
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
219 |
+
Args:
|
220 |
+
begin_index (`int`):
|
221 |
+
The begin index for the scheduler.
|
222 |
+
"""
|
223 |
+
self._begin_index = begin_index
|
224 |
+
|
225 |
+
# Modified from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler.set_timesteps
|
226 |
+
def set_timesteps(
|
227 |
+
self,
|
228 |
+
num_inference_steps: Union[int, None] = None,
|
229 |
+
device: Union[str, torch.device] = None,
|
230 |
+
sigmas: Optional[List[float]] = None,
|
231 |
+
mu: Optional[Union[float, None]] = None,
|
232 |
+
shift: Optional[Union[float, None]] = None,
|
233 |
+
):
|
234 |
+
"""
|
235 |
+
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
236 |
+
Args:
|
237 |
+
num_inference_steps (`int`):
|
238 |
+
Total number of the spacing of the time steps.
|
239 |
+
device (`str` or `torch.device`, *optional*):
|
240 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
241 |
+
"""
|
242 |
+
|
243 |
+
if self.config.use_dynamic_shifting and mu is None:
|
244 |
+
raise ValueError(
|
245 |
+
" you have to pass a value for `mu` when `use_dynamic_shifting` is set to be `True`"
|
246 |
+
)
|
247 |
+
|
248 |
+
if sigmas is None:
|
249 |
+
sigmas = np.linspace(self.sigma_max, self.sigma_min,
|
250 |
+
num_inference_steps +
|
251 |
+
1).copy()[:-1] # pyright: ignore
|
252 |
+
|
253 |
+
if self.config.use_dynamic_shifting:
|
254 |
+
sigmas = self.time_shift(mu, 1.0, sigmas) # pyright: ignore
|
255 |
+
else:
|
256 |
+
if shift is None:
|
257 |
+
shift = self.config.shift
|
258 |
+
sigmas = shift * sigmas / (1 +
|
259 |
+
(shift - 1) * sigmas) # pyright: ignore
|
260 |
+
|
261 |
+
if self.config.final_sigmas_type == "sigma_min":
|
262 |
+
sigma_last = ((1 - self.alphas_cumprod[0]) /
|
263 |
+
self.alphas_cumprod[0])**0.5
|
264 |
+
elif self.config.final_sigmas_type == "zero":
|
265 |
+
sigma_last = 0
|
266 |
+
else:
|
267 |
+
raise ValueError(
|
268 |
+
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
|
269 |
+
)
|
270 |
+
|
271 |
+
timesteps = sigmas * self.config.num_train_timesteps
|
272 |
+
sigmas = np.concatenate([sigmas, [sigma_last]
|
273 |
+
]).astype(np.float32) # pyright: ignore
|
274 |
+
|
275 |
+
self.sigmas = torch.from_numpy(sigmas)
|
276 |
+
self.timesteps = torch.from_numpy(timesteps).to(
|
277 |
+
device=device, dtype=torch.int64)
|
278 |
+
|
279 |
+
self.num_inference_steps = len(timesteps)
|
280 |
+
|
281 |
+
self.model_outputs = [
|
282 |
+
None,
|
283 |
+
] * self.config.solver_order
|
284 |
+
self.lower_order_nums = 0
|
285 |
+
|
286 |
+
self._step_index = None
|
287 |
+
self._begin_index = None
|
288 |
+
# self.sigmas = self.sigmas.to(
|
289 |
+
# "cpu") # to avoid too much CPU/GPU communication
|
290 |
+
|
291 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
292 |
+
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
|
293 |
+
"""
|
294 |
+
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
295 |
+
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
296 |
+
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
297 |
+
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
298 |
+
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
299 |
+
https://arxiv.org/abs/2205.11487
|
300 |
+
"""
|
301 |
+
dtype = sample.dtype
|
302 |
+
batch_size, channels, *remaining_dims = sample.shape
|
303 |
+
|
304 |
+
if dtype not in (torch.float32, torch.float64):
|
305 |
+
sample = sample.float(
|
306 |
+
) # upcast for quantile calculation, and clamp not implemented for cpu half
|
307 |
+
|
308 |
+
# Flatten sample for doing quantile calculation along each image
|
309 |
+
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
|
310 |
+
|
311 |
+
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
312 |
+
|
313 |
+
s = torch.quantile(
|
314 |
+
abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
|
315 |
+
s = torch.clamp(
|
316 |
+
s, min=1, max=self.config.sample_max_value
|
317 |
+
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
318 |
+
s = s.unsqueeze(
|
319 |
+
1) # (batch_size, 1) because clamp will broadcast along dim=0
|
320 |
+
sample = torch.clamp(
|
321 |
+
sample, -s, s
|
322 |
+
) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
|
323 |
+
|
324 |
+
sample = sample.reshape(batch_size, channels, *remaining_dims)
|
325 |
+
sample = sample.to(dtype)
|
326 |
+
|
327 |
+
return sample
|
328 |
+
|
329 |
+
# Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler._sigma_to_t
|
330 |
+
def _sigma_to_t(self, sigma):
|
331 |
+
return sigma * self.config.num_train_timesteps
|
332 |
+
|
333 |
+
def _sigma_to_alpha_sigma_t(self, sigma):
|
334 |
+
return 1 - sigma, sigma
|
335 |
+
|
336 |
+
# Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.set_timesteps
|
337 |
+
def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
|
338 |
+
return math.exp(mu) / (math.exp(mu) + (1 / t - 1)**sigma)
|
339 |
+
|
340 |
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.convert_model_output
|
341 |
+
def convert_model_output(
|
342 |
+
self,
|
343 |
+
model_output: torch.Tensor,
|
344 |
+
*args,
|
345 |
+
sample: torch.Tensor = None,
|
346 |
+
**kwargs,
|
347 |
+
) -> torch.Tensor:
|
348 |
+
"""
|
349 |
+
Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
|
350 |
+
designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
|
351 |
+
integral of the data prediction model.
|
352 |
+
<Tip>
|
353 |
+
The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
|
354 |
+
prediction and data prediction models.
|
355 |
+
</Tip>
|
356 |
+
Args:
|
357 |
+
model_output (`torch.Tensor`):
|
358 |
+
The direct output from the learned diffusion model.
|
359 |
+
sample (`torch.Tensor`):
|
360 |
+
A current instance of a sample created by the diffusion process.
|
361 |
+
Returns:
|
362 |
+
`torch.Tensor`:
|
363 |
+
The converted model output.
|
364 |
+
"""
|
365 |
+
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
|
366 |
+
if sample is None:
|
367 |
+
if len(args) > 1:
|
368 |
+
sample = args[1]
|
369 |
+
else:
|
370 |
+
raise ValueError(
|
371 |
+
"missing `sample` as a required keyward argument")
|
372 |
+
if timestep is not None:
|
373 |
+
deprecate(
|
374 |
+
"timesteps",
|
375 |
+
"1.0.0",
|
376 |
+
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
377 |
+
)
|
378 |
+
|
379 |
+
# DPM-Solver++ needs to solve an integral of the data prediction model.
|
380 |
+
if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]:
|
381 |
+
if self.config.prediction_type == "flow_prediction":
|
382 |
+
sigma_t = self.sigmas[self.step_index]
|
383 |
+
x0_pred = sample - sigma_t * model_output
|
384 |
+
else:
|
385 |
+
raise ValueError(
|
386 |
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`,"
|
387 |
+
" `v_prediction`, or `flow_prediction` for the FlowDPMSolverMultistepScheduler."
|
388 |
+
)
|
389 |
+
|
390 |
+
if self.config.thresholding:
|
391 |
+
x0_pred = self._threshold_sample(x0_pred)
|
392 |
+
|
393 |
+
return x0_pred
|
394 |
+
|
395 |
+
# DPM-Solver needs to solve an integral of the noise prediction model.
|
396 |
+
elif self.config.algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
|
397 |
+
if self.config.prediction_type == "flow_prediction":
|
398 |
+
sigma_t = self.sigmas[self.step_index]
|
399 |
+
epsilon = sample - (1 - sigma_t) * model_output
|
400 |
+
else:
|
401 |
+
raise ValueError(
|
402 |
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`,"
|
403 |
+
" `v_prediction` or `flow_prediction` for the FlowDPMSolverMultistepScheduler."
|
404 |
+
)
|
405 |
+
|
406 |
+
if self.config.thresholding:
|
407 |
+
sigma_t = self.sigmas[self.step_index]
|
408 |
+
x0_pred = sample - sigma_t * model_output
|
409 |
+
x0_pred = self._threshold_sample(x0_pred)
|
410 |
+
epsilon = model_output + x0_pred
|
411 |
+
|
412 |
+
return epsilon
|
413 |
+
|
414 |
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.dpm_solver_first_order_update
|
415 |
+
def dpm_solver_first_order_update(
|
416 |
+
self,
|
417 |
+
model_output: torch.Tensor,
|
418 |
+
*args,
|
419 |
+
sample: torch.Tensor = None,
|
420 |
+
noise: Optional[torch.Tensor] = None,
|
421 |
+
**kwargs,
|
422 |
+
) -> torch.Tensor:
|
423 |
+
"""
|
424 |
+
One step for the first-order DPMSolver (equivalent to DDIM).
|
425 |
+
Args:
|
426 |
+
model_output (`torch.Tensor`):
|
427 |
+
The direct output from the learned diffusion model.
|
428 |
+
sample (`torch.Tensor`):
|
429 |
+
A current instance of a sample created by the diffusion process.
|
430 |
+
Returns:
|
431 |
+
`torch.Tensor`:
|
432 |
+
The sample tensor at the previous timestep.
|
433 |
+
"""
|
434 |
+
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
|
435 |
+
prev_timestep = args[1] if len(args) > 1 else kwargs.pop(
|
436 |
+
"prev_timestep", None)
|
437 |
+
if sample is None:
|
438 |
+
if len(args) > 2:
|
439 |
+
sample = args[2]
|
440 |
+
else:
|
441 |
+
raise ValueError(
|
442 |
+
" missing `sample` as a required keyward argument")
|
443 |
+
if timestep is not None:
|
444 |
+
deprecate(
|
445 |
+
"timesteps",
|
446 |
+
"1.0.0",
|
447 |
+
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
448 |
+
)
|
449 |
+
|
450 |
+
if prev_timestep is not None:
|
451 |
+
deprecate(
|
452 |
+
"prev_timestep",
|
453 |
+
"1.0.0",
|
454 |
+
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
455 |
+
)
|
456 |
+
|
457 |
+
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[
|
458 |
+
self.step_index] # pyright: ignore
|
459 |
+
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
460 |
+
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
|
461 |
+
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
462 |
+
lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
|
463 |
+
|
464 |
+
h = lambda_t - lambda_s
|
465 |
+
if self.config.algorithm_type == "dpmsolver++":
|
466 |
+
x_t = (sigma_t /
|
467 |
+
sigma_s) * sample - (alpha_t *
|
468 |
+
(torch.exp(-h) - 1.0)) * model_output
|
469 |
+
elif self.config.algorithm_type == "dpmsolver":
|
470 |
+
x_t = (alpha_t /
|
471 |
+
alpha_s) * sample - (sigma_t *
|
472 |
+
(torch.exp(h) - 1.0)) * model_output
|
473 |
+
elif self.config.algorithm_type == "sde-dpmsolver++":
|
474 |
+
assert noise is not None
|
475 |
+
x_t = ((sigma_t / sigma_s * torch.exp(-h)) * sample +
|
476 |
+
(alpha_t * (1 - torch.exp(-2.0 * h))) * model_output +
|
477 |
+
sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise)
|
478 |
+
elif self.config.algorithm_type == "sde-dpmsolver":
|
479 |
+
assert noise is not None
|
480 |
+
x_t = ((alpha_t / alpha_s) * sample - 2.0 *
|
481 |
+
(sigma_t * (torch.exp(h) - 1.0)) * model_output +
|
482 |
+
sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise)
|
483 |
+
return x_t # pyright: ignore
|
484 |
+
|
485 |
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.multistep_dpm_solver_second_order_update
|
486 |
+
def multistep_dpm_solver_second_order_update(
|
487 |
+
self,
|
488 |
+
model_output_list: List[torch.Tensor],
|
489 |
+
*args,
|
490 |
+
sample: torch.Tensor = None,
|
491 |
+
noise: Optional[torch.Tensor] = None,
|
492 |
+
**kwargs,
|
493 |
+
) -> torch.Tensor:
|
494 |
+
"""
|
495 |
+
One step for the second-order multistep DPMSolver.
|
496 |
+
Args:
|
497 |
+
model_output_list (`List[torch.Tensor]`):
|
498 |
+
The direct outputs from learned diffusion model at current and latter timesteps.
|
499 |
+
sample (`torch.Tensor`):
|
500 |
+
A current instance of a sample created by the diffusion process.
|
501 |
+
Returns:
|
502 |
+
`torch.Tensor`:
|
503 |
+
The sample tensor at the previous timestep.
|
504 |
+
"""
|
505 |
+
timestep_list = args[0] if len(args) > 0 else kwargs.pop(
|
506 |
+
"timestep_list", None)
|
507 |
+
prev_timestep = args[1] if len(args) > 1 else kwargs.pop(
|
508 |
+
"prev_timestep", None)
|
509 |
+
if sample is None:
|
510 |
+
if len(args) > 2:
|
511 |
+
sample = args[2]
|
512 |
+
else:
|
513 |
+
raise ValueError(
|
514 |
+
" missing `sample` as a required keyward argument")
|
515 |
+
if timestep_list is not None:
|
516 |
+
deprecate(
|
517 |
+
"timestep_list",
|
518 |
+
"1.0.0",
|
519 |
+
"Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
520 |
+
)
|
521 |
+
|
522 |
+
if prev_timestep is not None:
|
523 |
+
deprecate(
|
524 |
+
"prev_timestep",
|
525 |
+
"1.0.0",
|
526 |
+
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
527 |
+
)
|
528 |
+
|
529 |
+
sigma_t, sigma_s0, sigma_s1 = (
|
530 |
+
self.sigmas[self.step_index + 1], # pyright: ignore
|
531 |
+
self.sigmas[self.step_index],
|
532 |
+
self.sigmas[self.step_index - 1], # pyright: ignore
|
533 |
+
)
|
534 |
+
|
535 |
+
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
536 |
+
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
|
537 |
+
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
|
538 |
+
|
539 |
+
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
540 |
+
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
|
541 |
+
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
|
542 |
+
|
543 |
+
m0, m1 = model_output_list[-1], model_output_list[-2]
|
544 |
+
|
545 |
+
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
|
546 |
+
r0 = h_0 / h
|
547 |
+
D0, D1 = m0, (1.0 / r0) * (m0 - m1)
|
548 |
+
if self.config.algorithm_type == "dpmsolver++":
|
549 |
+
# See https://arxiv.org/abs/2211.01095 for detailed derivations
|
550 |
+
if self.config.solver_type == "midpoint":
|
551 |
+
x_t = ((sigma_t / sigma_s0) * sample -
|
552 |
+
(alpha_t * (torch.exp(-h) - 1.0)) * D0 - 0.5 *
|
553 |
+
(alpha_t * (torch.exp(-h) - 1.0)) * D1)
|
554 |
+
elif self.config.solver_type == "heun":
|
555 |
+
x_t = ((sigma_t / sigma_s0) * sample -
|
556 |
+
(alpha_t * (torch.exp(-h) - 1.0)) * D0 +
|
557 |
+
(alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1)
|
558 |
+
elif self.config.algorithm_type == "dpmsolver":
|
559 |
+
# See https://arxiv.org/abs/2206.00927 for detailed derivations
|
560 |
+
if self.config.solver_type == "midpoint":
|
561 |
+
x_t = ((alpha_t / alpha_s0) * sample -
|
562 |
+
(sigma_t * (torch.exp(h) - 1.0)) * D0 - 0.5 *
|
563 |
+
(sigma_t * (torch.exp(h) - 1.0)) * D1)
|
564 |
+
elif self.config.solver_type == "heun":
|
565 |
+
x_t = ((alpha_t / alpha_s0) * sample -
|
566 |
+
(sigma_t * (torch.exp(h) - 1.0)) * D0 -
|
567 |
+
(sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1)
|
568 |
+
elif self.config.algorithm_type == "sde-dpmsolver++":
|
569 |
+
assert noise is not None
|
570 |
+
if self.config.solver_type == "midpoint":
|
571 |
+
x_t = ((sigma_t / sigma_s0 * torch.exp(-h)) * sample +
|
572 |
+
(alpha_t * (1 - torch.exp(-2.0 * h))) * D0 + 0.5 *
|
573 |
+
(alpha_t * (1 - torch.exp(-2.0 * h))) * D1 +
|
574 |
+
sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise)
|
575 |
+
elif self.config.solver_type == "heun":
|
576 |
+
x_t = ((sigma_t / sigma_s0 * torch.exp(-h)) * sample +
|
577 |
+
(alpha_t * (1 - torch.exp(-2.0 * h))) * D0 +
|
578 |
+
(alpha_t * ((1.0 - torch.exp(-2.0 * h)) /
|
579 |
+
(-2.0 * h) + 1.0)) * D1 +
|
580 |
+
sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise)
|
581 |
+
elif self.config.algorithm_type == "sde-dpmsolver":
|
582 |
+
assert noise is not None
|
583 |
+
if self.config.solver_type == "midpoint":
|
584 |
+
x_t = ((alpha_t / alpha_s0) * sample - 2.0 *
|
585 |
+
(sigma_t * (torch.exp(h) - 1.0)) * D0 -
|
586 |
+
(sigma_t * (torch.exp(h) - 1.0)) * D1 +
|
587 |
+
sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise)
|
588 |
+
elif self.config.solver_type == "heun":
|
589 |
+
x_t = ((alpha_t / alpha_s0) * sample - 2.0 *
|
590 |
+
(sigma_t * (torch.exp(h) - 1.0)) * D0 - 2.0 *
|
591 |
+
(sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 +
|
592 |
+
sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise)
|
593 |
+
return x_t # pyright: ignore
|
594 |
+
|
595 |
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.multistep_dpm_solver_third_order_update
|
596 |
+
def multistep_dpm_solver_third_order_update(
|
597 |
+
self,
|
598 |
+
model_output_list: List[torch.Tensor],
|
599 |
+
*args,
|
600 |
+
sample: torch.Tensor = None,
|
601 |
+
**kwargs,
|
602 |
+
) -> torch.Tensor:
|
603 |
+
"""
|
604 |
+
One step for the third-order multistep DPMSolver.
|
605 |
+
Args:
|
606 |
+
model_output_list (`List[torch.Tensor]`):
|
607 |
+
The direct outputs from learned diffusion model at current and latter timesteps.
|
608 |
+
sample (`torch.Tensor`):
|
609 |
+
A current instance of a sample created by diffusion process.
|
610 |
+
Returns:
|
611 |
+
`torch.Tensor`:
|
612 |
+
The sample tensor at the previous timestep.
|
613 |
+
"""
|
614 |
+
|
615 |
+
timestep_list = args[0] if len(args) > 0 else kwargs.pop(
|
616 |
+
"timestep_list", None)
|
617 |
+
prev_timestep = args[1] if len(args) > 1 else kwargs.pop(
|
618 |
+
"prev_timestep", None)
|
619 |
+
if sample is None:
|
620 |
+
if len(args) > 2:
|
621 |
+
sample = args[2]
|
622 |
+
else:
|
623 |
+
raise ValueError(
|
624 |
+
" missing`sample` as a required keyward argument")
|
625 |
+
if timestep_list is not None:
|
626 |
+
deprecate(
|
627 |
+
"timestep_list",
|
628 |
+
"1.0.0",
|
629 |
+
"Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
630 |
+
)
|
631 |
+
|
632 |
+
if prev_timestep is not None:
|
633 |
+
deprecate(
|
634 |
+
"prev_timestep",
|
635 |
+
"1.0.0",
|
636 |
+
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
637 |
+
)
|
638 |
+
|
639 |
+
sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
|
640 |
+
self.sigmas[self.step_index + 1], # pyright: ignore
|
641 |
+
self.sigmas[self.step_index],
|
642 |
+
self.sigmas[self.step_index - 1], # pyright: ignore
|
643 |
+
self.sigmas[self.step_index - 2], # pyright: ignore
|
644 |
+
)
|
645 |
+
|
646 |
+
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
647 |
+
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
|
648 |
+
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
|
649 |
+
alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)
|
650 |
+
|
651 |
+
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
652 |
+
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
|
653 |
+
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
|
654 |
+
lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2)
|
655 |
+
|
656 |
+
m0, m1, m2 = model_output_list[-1], model_output_list[
|
657 |
+
-2], model_output_list[-3]
|
658 |
+
|
659 |
+
h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
|
660 |
+
r0, r1 = h_0 / h, h_1 / h
|
661 |
+
D0 = m0
|
662 |
+
D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2)
|
663 |
+
D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
|
664 |
+
D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1)
|
665 |
+
if self.config.algorithm_type == "dpmsolver++":
|
666 |
+
# See https://arxiv.org/abs/2206.00927 for detailed derivations
|
667 |
+
x_t = ((sigma_t / sigma_s0) * sample -
|
668 |
+
(alpha_t * (torch.exp(-h) - 1.0)) * D0 +
|
669 |
+
(alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 -
|
670 |
+
(alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2)
|
671 |
+
elif self.config.algorithm_type == "dpmsolver":
|
672 |
+
# See https://arxiv.org/abs/2206.00927 for detailed derivations
|
673 |
+
x_t = ((alpha_t / alpha_s0) * sample - (sigma_t *
|
674 |
+
(torch.exp(h) - 1.0)) * D0 -
|
675 |
+
(sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 -
|
676 |
+
(sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2)
|
677 |
+
return x_t # pyright: ignore
|
678 |
+
|
679 |
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
680 |
+
if schedule_timesteps is None:
|
681 |
+
schedule_timesteps = self.timesteps
|
682 |
+
|
683 |
+
indices = (schedule_timesteps == timestep).nonzero()
|
684 |
+
|
685 |
+
# The sigma index that is taken for the **very** first `step`
|
686 |
+
# is always the second index (or the last index if there is only 1)
|
687 |
+
# This way we can ensure we don't accidentally skip a sigma in
|
688 |
+
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
689 |
+
pos = 1 if len(indices) > 1 else 0
|
690 |
+
|
691 |
+
return indices[pos].item()
|
692 |
+
|
693 |
+
def _init_step_index(self, timestep):
|
694 |
+
"""
|
695 |
+
Initialize the step_index counter for the scheduler.
|
696 |
+
"""
|
697 |
+
|
698 |
+
if self.begin_index is None:
|
699 |
+
if isinstance(timestep, torch.Tensor):
|
700 |
+
timestep = timestep.to(self.timesteps.device)
|
701 |
+
self._step_index = self.index_for_timestep(timestep)
|
702 |
+
else:
|
703 |
+
self._step_index = self._begin_index
|
704 |
+
|
705 |
+
# Modified from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.step
|
706 |
+
def step(
|
707 |
+
self,
|
708 |
+
model_output: torch.Tensor,
|
709 |
+
timestep: Union[int, torch.Tensor],
|
710 |
+
sample: torch.Tensor,
|
711 |
+
generator=None,
|
712 |
+
variance_noise: Optional[torch.Tensor] = None,
|
713 |
+
return_dict: bool = True,
|
714 |
+
) -> Union[SchedulerOutput, Tuple]:
|
715 |
+
"""
|
716 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
|
717 |
+
the multistep DPMSolver.
|
718 |
+
Args:
|
719 |
+
model_output (`torch.Tensor`):
|
720 |
+
The direct output from learned diffusion model.
|
721 |
+
timestep (`int`):
|
722 |
+
The current discrete timestep in the diffusion chain.
|
723 |
+
sample (`torch.Tensor`):
|
724 |
+
A current instance of a sample created by the diffusion process.
|
725 |
+
generator (`torch.Generator`, *optional*):
|
726 |
+
A random number generator.
|
727 |
+
variance_noise (`torch.Tensor`):
|
728 |
+
Alternative to generating noise with `generator` by directly providing the noise for the variance
|
729 |
+
itself. Useful for methods such as [`LEdits++`].
|
730 |
+
return_dict (`bool`):
|
731 |
+
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
|
732 |
+
Returns:
|
733 |
+
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
|
734 |
+
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
|
735 |
+
tuple is returned where the first element is the sample tensor.
|
736 |
+
"""
|
737 |
+
if self.num_inference_steps is None:
|
738 |
+
raise ValueError(
|
739 |
+
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
740 |
+
)
|
741 |
+
|
742 |
+
if self.step_index is None:
|
743 |
+
self._init_step_index(timestep)
|
744 |
+
|
745 |
+
# Improve numerical stability for small number of steps
|
746 |
+
lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
|
747 |
+
self.config.euler_at_final or
|
748 |
+
(self.config.lower_order_final and len(self.timesteps) < 15) or
|
749 |
+
self.config.final_sigmas_type == "zero")
|
750 |
+
lower_order_second = ((self.step_index == len(self.timesteps) - 2) and
|
751 |
+
self.config.lower_order_final and
|
752 |
+
len(self.timesteps) < 15)
|
753 |
+
|
754 |
+
model_output = self.convert_model_output(model_output, sample=sample)
|
755 |
+
for i in range(self.config.solver_order - 1):
|
756 |
+
self.model_outputs[i] = self.model_outputs[i + 1]
|
757 |
+
self.model_outputs[-1] = model_output
|
758 |
+
|
759 |
+
# Upcast to avoid precision issues when computing prev_sample
|
760 |
+
sample = sample.to(torch.float32)
|
761 |
+
if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"
|
762 |
+
] and variance_noise is None:
|
763 |
+
noise = randn_tensor(
|
764 |
+
model_output.shape,
|
765 |
+
generator=generator,
|
766 |
+
device=model_output.device,
|
767 |
+
dtype=torch.float32)
|
768 |
+
elif self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]:
|
769 |
+
noise = variance_noise.to(
|
770 |
+
device=model_output.device,
|
771 |
+
dtype=torch.float32) # pyright: ignore
|
772 |
+
else:
|
773 |
+
noise = None
|
774 |
+
|
775 |
+
if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
|
776 |
+
prev_sample = self.dpm_solver_first_order_update(
|
777 |
+
model_output, sample=sample, noise=noise)
|
778 |
+
elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
|
779 |
+
prev_sample = self.multistep_dpm_solver_second_order_update(
|
780 |
+
self.model_outputs, sample=sample, noise=noise)
|
781 |
+
else:
|
782 |
+
prev_sample = self.multistep_dpm_solver_third_order_update(
|
783 |
+
self.model_outputs, sample=sample)
|
784 |
+
|
785 |
+
if self.lower_order_nums < self.config.solver_order:
|
786 |
+
self.lower_order_nums += 1
|
787 |
+
|
788 |
+
# Cast sample back to expected dtype
|
789 |
+
prev_sample = prev_sample.to(model_output.dtype)
|
790 |
+
|
791 |
+
# upon completion increase step index by one
|
792 |
+
self._step_index += 1 # pyright: ignore
|
793 |
+
|
794 |
+
if not return_dict:
|
795 |
+
return (prev_sample,)
|
796 |
+
|
797 |
+
return SchedulerOutput(prev_sample=prev_sample)
|
798 |
+
|
799 |
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.scale_model_input
|
800 |
+
def scale_model_input(self, sample: torch.Tensor, *args,
|
801 |
+
**kwargs) -> torch.Tensor:
|
802 |
+
"""
|
803 |
+
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
804 |
+
current timestep.
|
805 |
+
Args:
|
806 |
+
sample (`torch.Tensor`):
|
807 |
+
The input sample.
|
808 |
+
Returns:
|
809 |
+
`torch.Tensor`:
|
810 |
+
A scaled input sample.
|
811 |
+
"""
|
812 |
+
return sample
|
813 |
+
|
814 |
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.scale_model_input
|
815 |
+
def add_noise(
|
816 |
+
self,
|
817 |
+
original_samples: torch.Tensor,
|
818 |
+
noise: torch.Tensor,
|
819 |
+
timesteps: torch.IntTensor,
|
820 |
+
) -> torch.Tensor:
|
821 |
+
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
822 |
+
sigmas = self.sigmas.to(
|
823 |
+
device=original_samples.device, dtype=original_samples.dtype)
|
824 |
+
if original_samples.device.type == "mps" and torch.is_floating_point(
|
825 |
+
timesteps):
|
826 |
+
# mps does not support float64
|
827 |
+
schedule_timesteps = self.timesteps.to(
|
828 |
+
original_samples.device, dtype=torch.float32)
|
829 |
+
timesteps = timesteps.to(
|
830 |
+
original_samples.device, dtype=torch.float32)
|
831 |
+
else:
|
832 |
+
schedule_timesteps = self.timesteps.to(original_samples.device)
|
833 |
+
timesteps = timesteps.to(original_samples.device)
|
834 |
+
|
835 |
+
# begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
|
836 |
+
if self.begin_index is None:
|
837 |
+
step_indices = [
|
838 |
+
self.index_for_timestep(t, schedule_timesteps)
|
839 |
+
for t in timesteps
|
840 |
+
]
|
841 |
+
elif self.step_index is not None:
|
842 |
+
# add_noise is called after first denoising step (for inpainting)
|
843 |
+
step_indices = [self.step_index] * timesteps.shape[0]
|
844 |
+
else:
|
845 |
+
# add noise is called before first denoising step to create initial latent(img2img)
|
846 |
+
step_indices = [self.begin_index] * timesteps.shape[0]
|
847 |
+
|
848 |
+
sigma = sigmas[step_indices].flatten()
|
849 |
+
while len(sigma.shape) < len(original_samples.shape):
|
850 |
+
sigma = sigma.unsqueeze(-1)
|
851 |
+
|
852 |
+
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
|
853 |
+
noisy_samples = alpha_t * original_samples + sigma_t * noise
|
854 |
+
return noisy_samples
|
855 |
+
|
856 |
+
def __len__(self):
|
857 |
+
return self.config.num_train_timesteps
|
858 |
+
|
859 |
+
|
860 |
+
class FlowMatchScheduler():
|
861 |
+
|
862 |
+
def __init__(self, num_inference_steps=100, num_train_timesteps=1000, shift=3.0, sigma_max=1.0, sigma_min=0.003/1.002, inverse_timesteps=False, extra_one_step=False, reverse_sigmas=False):
|
863 |
+
self.num_train_timesteps = num_train_timesteps
|
864 |
+
self.shift = shift
|
865 |
+
self.sigma_max = sigma_max
|
866 |
+
self.sigma_min = sigma_min
|
867 |
+
self.inverse_timesteps = inverse_timesteps
|
868 |
+
self.extra_one_step = extra_one_step
|
869 |
+
self.reverse_sigmas = reverse_sigmas
|
870 |
+
self.set_timesteps(num_inference_steps)
|
871 |
+
|
872 |
+
|
873 |
+
def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0, training=False, shift=None):
|
874 |
+
if shift is not None:
|
875 |
+
self.shift = shift
|
876 |
+
sigma_start = self.sigma_min + (self.sigma_max - self.sigma_min) * denoising_strength
|
877 |
+
if self.extra_one_step:
|
878 |
+
self.sigmas = torch.linspace(sigma_start, self.sigma_min, num_inference_steps + 1)[:-1]
|
879 |
+
else:
|
880 |
+
self.sigmas = torch.linspace(sigma_start, self.sigma_min, num_inference_steps)
|
881 |
+
if self.inverse_timesteps:
|
882 |
+
self.sigmas = torch.flip(self.sigmas, dims=[0])
|
883 |
+
self.sigmas = self.shift * self.sigmas / (1 + (self.shift - 1) * self.sigmas)
|
884 |
+
if self.reverse_sigmas:
|
885 |
+
self.sigmas = 1 - self.sigmas
|
886 |
+
self.timesteps = self.sigmas * self.num_train_timesteps
|
887 |
+
if training:
|
888 |
+
x = self.timesteps
|
889 |
+
y = torch.exp(-2 * ((x - num_inference_steps / 2) / num_inference_steps) ** 2)
|
890 |
+
y_shifted = y - y.min()
|
891 |
+
bsmntw_weighing = y_shifted * (num_inference_steps / y_shifted.sum())
|
892 |
+
self.linear_timesteps_weights = bsmntw_weighing
|
893 |
+
|
894 |
+
|
895 |
+
def step(self, model_output, timestep, sample, to_final=False, **kwargs):
|
896 |
+
if isinstance(timestep, torch.Tensor):
|
897 |
+
timestep = timestep.cpu()
|
898 |
+
timestep_id = torch.argmin((self.timesteps - timestep).abs())
|
899 |
+
sigma = self.sigmas[timestep_id]
|
900 |
+
if to_final or timestep_id + 1 >= len(self.timesteps):
|
901 |
+
sigma_ = 1 if (self.inverse_timesteps or self.reverse_sigmas) else 0
|
902 |
+
else:
|
903 |
+
sigma_ = self.sigmas[timestep_id + 1]
|
904 |
+
prev_sample = sample + model_output * (sigma_ - sigma)
|
905 |
+
return prev_sample
|
906 |
+
|
907 |
+
|
908 |
+
def return_to_timestep(self, timestep, sample, sample_stablized):
|
909 |
+
if isinstance(timestep, torch.Tensor):
|
910 |
+
timestep = timestep.cpu()
|
911 |
+
timestep_id = torch.argmin((self.timesteps - timestep).abs())
|
912 |
+
sigma = self.sigmas[timestep_id]
|
913 |
+
model_output = (sample - sample_stablized) / sigma
|
914 |
+
return model_output
|
915 |
+
|
916 |
+
|
917 |
+
def add_noise(self, original_samples, noise, timestep):
|
918 |
+
if isinstance(timestep, torch.Tensor):
|
919 |
+
timestep = timestep.cpu()
|
920 |
+
timestep_id = torch.argmin((self.timesteps - timestep).abs())
|
921 |
+
sigma = self.sigmas[timestep_id]
|
922 |
+
sample = (1 - sigma) * original_samples + sigma * noise
|
923 |
+
return sample
|
924 |
+
|
925 |
+
|
926 |
+
def training_target(self, sample, noise, timestep):
|
927 |
+
target = noise - sample
|
928 |
+
return target
|
929 |
+
|
930 |
+
|
931 |
+
def training_weight(self, timestep):
|
932 |
+
timestep_id = torch.argmin((self.timesteps - timestep.to(self.timesteps.device)).abs())
|
933 |
+
weights = self.linear_timesteps_weights[timestep_id]
|
934 |
+
return weights
|
wan/utils/fm_solvers_unipc.py
ADDED
@@ -0,0 +1,803 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copied from https://github.com/huggingface/diffusers/blob/v0.31.0/src/diffusers/schedulers/scheduling_unipc_multistep.py
|
2 |
+
# Convert unipc for flow matching
|
3 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
4 |
+
|
5 |
+
import math
|
6 |
+
from typing import List, Optional, Tuple, Union
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
11 |
+
from diffusers.schedulers.scheduling_utils import (KarrasDiffusionSchedulers,
|
12 |
+
SchedulerMixin,
|
13 |
+
SchedulerOutput)
|
14 |
+
from diffusers.utils import deprecate, is_scipy_available
|
15 |
+
|
16 |
+
if is_scipy_available():
|
17 |
+
import scipy.stats
|
18 |
+
|
19 |
+
|
20 |
+
class FlowUniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
21 |
+
"""
|
22 |
+
`UniPCMultistepScheduler` is a training-free framework designed for the fast sampling of diffusion models.
|
23 |
+
|
24 |
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
25 |
+
methods the library implements for all schedulers such as loading and saving.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
num_train_timesteps (`int`, defaults to 1000):
|
29 |
+
The number of diffusion steps to train the model.
|
30 |
+
solver_order (`int`, default `2`):
|
31 |
+
The UniPC order which can be any positive integer. The effective order of accuracy is `solver_order + 1`
|
32 |
+
due to the UniC. It is recommended to use `solver_order=2` for guided sampling, and `solver_order=3` for
|
33 |
+
unconditional sampling.
|
34 |
+
prediction_type (`str`, defaults to "flow_prediction"):
|
35 |
+
Prediction type of the scheduler function; must be `flow_prediction` for this scheduler, which predicts
|
36 |
+
the flow of the diffusion process.
|
37 |
+
thresholding (`bool`, defaults to `False`):
|
38 |
+
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
|
39 |
+
as Stable Diffusion.
|
40 |
+
dynamic_thresholding_ratio (`float`, defaults to 0.995):
|
41 |
+
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
|
42 |
+
sample_max_value (`float`, defaults to 1.0):
|
43 |
+
The threshold value for dynamic thresholding. Valid only when `thresholding=True` and `predict_x0=True`.
|
44 |
+
predict_x0 (`bool`, defaults to `True`):
|
45 |
+
Whether to use the updating algorithm on the predicted x0.
|
46 |
+
solver_type (`str`, default `bh2`):
|
47 |
+
Solver type for UniPC. It is recommended to use `bh1` for unconditional sampling when steps < 10, and `bh2`
|
48 |
+
otherwise.
|
49 |
+
lower_order_final (`bool`, default `True`):
|
50 |
+
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
|
51 |
+
stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
|
52 |
+
disable_corrector (`list`, default `[]`):
|
53 |
+
Decides which step to disable the corrector to mitigate the misalignment between `epsilon_theta(x_t, c)`
|
54 |
+
and `epsilon_theta(x_t^c, c)` which can influence convergence for a large guidance scale. Corrector is
|
55 |
+
usually disabled during the first few steps.
|
56 |
+
solver_p (`SchedulerMixin`, default `None`):
|
57 |
+
Any other scheduler that if specified, the algorithm becomes `solver_p + UniC`.
|
58 |
+
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
59 |
+
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
60 |
+
the sigmas are determined according to a sequence of noise levels {σi}.
|
61 |
+
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
62 |
+
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
63 |
+
timestep_spacing (`str`, defaults to `"linspace"`):
|
64 |
+
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
65 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
66 |
+
steps_offset (`int`, defaults to 0):
|
67 |
+
An offset added to the inference steps, as required by some model families.
|
68 |
+
final_sigmas_type (`str`, defaults to `"zero"`):
|
69 |
+
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
|
70 |
+
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
|
71 |
+
"""
|
72 |
+
|
73 |
+
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
74 |
+
order = 1
|
75 |
+
|
76 |
+
@register_to_config
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
num_train_timesteps: int = 1000,
|
80 |
+
solver_order: int = 2,
|
81 |
+
prediction_type: str = "flow_prediction",
|
82 |
+
shift: Optional[float] = 1.0,
|
83 |
+
use_dynamic_shifting=False,
|
84 |
+
thresholding: bool = False,
|
85 |
+
dynamic_thresholding_ratio: float = 0.995,
|
86 |
+
sample_max_value: float = 1.0,
|
87 |
+
predict_x0: bool = True,
|
88 |
+
solver_type: str = "bh2",
|
89 |
+
lower_order_final: bool = True,
|
90 |
+
disable_corrector: List[int] = [],
|
91 |
+
solver_p: SchedulerMixin = None,
|
92 |
+
timestep_spacing: str = "linspace",
|
93 |
+
steps_offset: int = 0,
|
94 |
+
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
|
95 |
+
):
|
96 |
+
|
97 |
+
if solver_type not in ["bh1", "bh2"]:
|
98 |
+
if solver_type in ["midpoint", "heun", "logrho"]:
|
99 |
+
self.register_to_config(solver_type="bh2")
|
100 |
+
else:
|
101 |
+
raise NotImplementedError(
|
102 |
+
f"{solver_type} is not implemented for {self.__class__}")
|
103 |
+
|
104 |
+
self.predict_x0 = predict_x0
|
105 |
+
# setable values
|
106 |
+
self.num_inference_steps = None
|
107 |
+
alphas = np.linspace(1, 1 / num_train_timesteps,
|
108 |
+
num_train_timesteps)[::-1].copy()
|
109 |
+
sigmas = 1.0 - alphas
|
110 |
+
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32)
|
111 |
+
|
112 |
+
if not use_dynamic_shifting:
|
113 |
+
# when use_dynamic_shifting is True, we apply the timestep shifting on the fly based on the image resolution
|
114 |
+
sigmas = shift * sigmas / (1 +
|
115 |
+
(shift - 1) * sigmas) # pyright: ignore
|
116 |
+
|
117 |
+
self.sigmas = sigmas
|
118 |
+
self.timesteps = sigmas * num_train_timesteps
|
119 |
+
|
120 |
+
self.model_outputs = [None] * solver_order
|
121 |
+
self.timestep_list = [None] * solver_order
|
122 |
+
self.lower_order_nums = 0
|
123 |
+
self.disable_corrector = disable_corrector
|
124 |
+
self.solver_p = solver_p
|
125 |
+
self.last_sample = None
|
126 |
+
self._step_index = None
|
127 |
+
self._begin_index = None
|
128 |
+
|
129 |
+
self.sigmas = self.sigmas.to(
|
130 |
+
"cpu") # to avoid too much CPU/GPU communication
|
131 |
+
self.sigma_min = self.sigmas[-1].item()
|
132 |
+
self.sigma_max = self.sigmas[0].item()
|
133 |
+
|
134 |
+
@property
|
135 |
+
def step_index(self):
|
136 |
+
"""
|
137 |
+
The index counter for current timestep. It will increase 1 after each scheduler step.
|
138 |
+
"""
|
139 |
+
return self._step_index
|
140 |
+
|
141 |
+
@property
|
142 |
+
def begin_index(self):
|
143 |
+
"""
|
144 |
+
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
145 |
+
"""
|
146 |
+
return self._begin_index
|
147 |
+
|
148 |
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
149 |
+
def set_begin_index(self, begin_index: int = 0):
|
150 |
+
"""
|
151 |
+
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
begin_index (`int`):
|
155 |
+
The begin index for the scheduler.
|
156 |
+
"""
|
157 |
+
self._begin_index = begin_index
|
158 |
+
|
159 |
+
# Modified from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler.set_timesteps
|
160 |
+
def set_timesteps(
|
161 |
+
self,
|
162 |
+
num_inference_steps: Union[int, None] = None,
|
163 |
+
device: Union[str, torch.device] = None,
|
164 |
+
sigmas: Optional[List[float]] = None,
|
165 |
+
mu: Optional[Union[float, None]] = None,
|
166 |
+
shift: Optional[Union[float, None]] = None,
|
167 |
+
):
|
168 |
+
"""
|
169 |
+
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
170 |
+
Args:
|
171 |
+
num_inference_steps (`int`):
|
172 |
+
Total number of the spacing of the time steps.
|
173 |
+
device (`str` or `torch.device`, *optional*):
|
174 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
175 |
+
"""
|
176 |
+
|
177 |
+
if self.config.use_dynamic_shifting and mu is None:
|
178 |
+
raise ValueError(
|
179 |
+
" you have to pass a value for `mu` when `use_dynamic_shifting` is set to be `True`"
|
180 |
+
)
|
181 |
+
|
182 |
+
if sigmas is None:
|
183 |
+
sigmas = np.linspace(self.sigma_max, self.sigma_min,
|
184 |
+
num_inference_steps +
|
185 |
+
1).copy()[:-1] # pyright: ignore
|
186 |
+
|
187 |
+
if self.config.use_dynamic_shifting:
|
188 |
+
sigmas = self.time_shift(mu, 1.0, sigmas) # pyright: ignore
|
189 |
+
else:
|
190 |
+
if shift is None:
|
191 |
+
shift = self.config.shift
|
192 |
+
sigmas = shift * sigmas / (1 +
|
193 |
+
(shift - 1) * sigmas) # pyright: ignore
|
194 |
+
|
195 |
+
if self.config.final_sigmas_type == "sigma_min":
|
196 |
+
sigma_last = ((1 - self.alphas_cumprod[0]) /
|
197 |
+
self.alphas_cumprod[0])**0.5
|
198 |
+
elif self.config.final_sigmas_type == "zero":
|
199 |
+
sigma_last = 0
|
200 |
+
else:
|
201 |
+
raise ValueError(
|
202 |
+
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
|
203 |
+
)
|
204 |
+
|
205 |
+
timesteps = sigmas * self.config.num_train_timesteps
|
206 |
+
sigmas = np.concatenate([sigmas, [sigma_last]
|
207 |
+
]).astype(np.float32) # pyright: ignore
|
208 |
+
|
209 |
+
self.sigmas = torch.from_numpy(sigmas)
|
210 |
+
self.timesteps = torch.from_numpy(timesteps).to(
|
211 |
+
device=device, dtype=torch.int64)
|
212 |
+
|
213 |
+
self.num_inference_steps = len(timesteps)
|
214 |
+
|
215 |
+
self.model_outputs = [
|
216 |
+
None,
|
217 |
+
] * self.config.solver_order
|
218 |
+
self.lower_order_nums = 0
|
219 |
+
self.last_sample = None
|
220 |
+
if self.solver_p:
|
221 |
+
self.solver_p.set_timesteps(self.num_inference_steps, device=device)
|
222 |
+
|
223 |
+
# add an index counter for schedulers that allow duplicated timesteps
|
224 |
+
self._step_index = None
|
225 |
+
self._begin_index = None
|
226 |
+
self.sigmas = self.sigmas.to(
|
227 |
+
"cpu") # to avoid too much CPU/GPU communication
|
228 |
+
|
229 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
230 |
+
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
|
231 |
+
"""
|
232 |
+
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
233 |
+
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
234 |
+
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
235 |
+
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
236 |
+
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
237 |
+
|
238 |
+
https://arxiv.org/abs/2205.11487
|
239 |
+
"""
|
240 |
+
dtype = sample.dtype
|
241 |
+
batch_size, channels, *remaining_dims = sample.shape
|
242 |
+
|
243 |
+
if dtype not in (torch.float32, torch.float64):
|
244 |
+
sample = sample.float(
|
245 |
+
) # upcast for quantile calculation, and clamp not implemented for cpu half
|
246 |
+
|
247 |
+
# Flatten sample for doing quantile calculation along each image
|
248 |
+
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
|
249 |
+
|
250 |
+
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
251 |
+
|
252 |
+
s = torch.quantile(
|
253 |
+
abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
|
254 |
+
s = torch.clamp(
|
255 |
+
s, min=1, max=self.config.sample_max_value
|
256 |
+
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
257 |
+
s = s.unsqueeze(
|
258 |
+
1) # (batch_size, 1) because clamp will broadcast along dim=0
|
259 |
+
sample = torch.clamp(
|
260 |
+
sample, -s, s
|
261 |
+
) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
|
262 |
+
|
263 |
+
sample = sample.reshape(batch_size, channels, *remaining_dims)
|
264 |
+
sample = sample.to(dtype)
|
265 |
+
|
266 |
+
return sample
|
267 |
+
|
268 |
+
# Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler._sigma_to_t
|
269 |
+
def _sigma_to_t(self, sigma):
|
270 |
+
return sigma * self.config.num_train_timesteps
|
271 |
+
|
272 |
+
def _sigma_to_alpha_sigma_t(self, sigma):
|
273 |
+
return 1 - sigma, sigma
|
274 |
+
|
275 |
+
# Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.set_timesteps
|
276 |
+
def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
|
277 |
+
return math.exp(mu) / (math.exp(mu) + (1 / t - 1)**sigma)
|
278 |
+
|
279 |
+
def convert_model_output(
|
280 |
+
self,
|
281 |
+
model_output: torch.Tensor,
|
282 |
+
*args,
|
283 |
+
sample: torch.Tensor = None,
|
284 |
+
**kwargs,
|
285 |
+
) -> torch.Tensor:
|
286 |
+
r"""
|
287 |
+
Convert the model output to the corresponding type the UniPC algorithm needs.
|
288 |
+
|
289 |
+
Args:
|
290 |
+
model_output (`torch.Tensor`):
|
291 |
+
The direct output from the learned diffusion model.
|
292 |
+
timestep (`int`):
|
293 |
+
The current discrete timestep in the diffusion chain.
|
294 |
+
sample (`torch.Tensor`):
|
295 |
+
A current instance of a sample created by the diffusion process.
|
296 |
+
|
297 |
+
Returns:
|
298 |
+
`torch.Tensor`:
|
299 |
+
The converted model output.
|
300 |
+
"""
|
301 |
+
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
|
302 |
+
if sample is None:
|
303 |
+
if len(args) > 1:
|
304 |
+
sample = args[1]
|
305 |
+
else:
|
306 |
+
raise ValueError(
|
307 |
+
"missing `sample` as a required keyward argument")
|
308 |
+
if timestep is not None:
|
309 |
+
deprecate(
|
310 |
+
"timesteps",
|
311 |
+
"1.0.0",
|
312 |
+
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
313 |
+
)
|
314 |
+
|
315 |
+
sigma = self.sigmas[self.step_index]
|
316 |
+
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
|
317 |
+
|
318 |
+
print("sigma_t ==>", self.step_index, sigma, sigma_t, alpha_t, sample.shape, model_output.shape)
|
319 |
+
if self.predict_x0:
|
320 |
+
if self.config.prediction_type == "flow_prediction":
|
321 |
+
sigma_t = self.sigmas[self.step_index]
|
322 |
+
x0_pred = sample - sigma_t * model_output
|
323 |
+
else:
|
324 |
+
raise ValueError(
|
325 |
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`,"
|
326 |
+
" `v_prediction` or `flow_prediction` for the UniPCMultistepScheduler."
|
327 |
+
)
|
328 |
+
|
329 |
+
if self.config.thresholding:
|
330 |
+
x0_pred = self._threshold_sample(x0_pred)
|
331 |
+
print("self.config.thresholding", self.config.thresholding)
|
332 |
+
return x0_pred
|
333 |
+
else:
|
334 |
+
if self.config.prediction_type == "flow_prediction":
|
335 |
+
sigma_t = self.sigmas[self.step_index]
|
336 |
+
epsilon = sample - (1 - sigma_t) * model_output
|
337 |
+
else:
|
338 |
+
raise ValueError(
|
339 |
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`,"
|
340 |
+
" `v_prediction` or `flow_prediction` for the UniPCMultistepScheduler."
|
341 |
+
)
|
342 |
+
|
343 |
+
if self.config.thresholding:
|
344 |
+
sigma_t = self.sigmas[self.step_index]
|
345 |
+
x0_pred = sample - sigma_t * model_output
|
346 |
+
x0_pred = self._threshold_sample(x0_pred)
|
347 |
+
epsilon = model_output + x0_pred
|
348 |
+
|
349 |
+
return epsilon
|
350 |
+
|
351 |
+
def multistep_uni_p_bh_update(
|
352 |
+
self,
|
353 |
+
model_output: torch.Tensor,
|
354 |
+
*args,
|
355 |
+
sample: torch.Tensor = None,
|
356 |
+
order: int = None, # pyright: ignore
|
357 |
+
**kwargs,
|
358 |
+
) -> torch.Tensor:
|
359 |
+
"""
|
360 |
+
One step for the UniP (B(h) version). Alternatively, `self.solver_p` is used if is specified.
|
361 |
+
|
362 |
+
Args:
|
363 |
+
model_output (`torch.Tensor`):
|
364 |
+
The direct output from the learned diffusion model at the current timestep.
|
365 |
+
prev_timestep (`int`):
|
366 |
+
The previous discrete timestep in the diffusion chain.
|
367 |
+
sample (`torch.Tensor`):
|
368 |
+
A current instance of a sample created by the diffusion process.
|
369 |
+
order (`int`):
|
370 |
+
The order of UniP at this timestep (corresponds to the *p* in UniPC-p).
|
371 |
+
|
372 |
+
Returns:
|
373 |
+
`torch.Tensor`:
|
374 |
+
The sample tensor at the previous timestep.
|
375 |
+
"""
|
376 |
+
prev_timestep = args[0] if len(args) > 0 else kwargs.pop(
|
377 |
+
"prev_timestep", None)
|
378 |
+
if sample is None:
|
379 |
+
if len(args) > 1:
|
380 |
+
sample = args[1]
|
381 |
+
else:
|
382 |
+
raise ValueError(
|
383 |
+
" missing `sample` as a required keyward argument")
|
384 |
+
if order is None:
|
385 |
+
if len(args) > 2:
|
386 |
+
order = args[2]
|
387 |
+
else:
|
388 |
+
raise ValueError(
|
389 |
+
" missing `order` as a required keyward argument")
|
390 |
+
if prev_timestep is not None:
|
391 |
+
deprecate(
|
392 |
+
"prev_timestep",
|
393 |
+
"1.0.0",
|
394 |
+
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
395 |
+
)
|
396 |
+
model_output_list = self.model_outputs
|
397 |
+
|
398 |
+
s0 = self.timestep_list[-1]
|
399 |
+
m0 = model_output_list[-1]
|
400 |
+
x = sample
|
401 |
+
|
402 |
+
if self.solver_p:
|
403 |
+
x_t = self.solver_p.step(model_output, s0, x).prev_sample
|
404 |
+
return x_t
|
405 |
+
|
406 |
+
sigma_t, sigma_s0 = self.sigmas[self.step_index + 1], self.sigmas[
|
407 |
+
self.step_index] # pyright: ignore
|
408 |
+
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
409 |
+
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
|
410 |
+
|
411 |
+
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
412 |
+
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
|
413 |
+
|
414 |
+
h = lambda_t - lambda_s0
|
415 |
+
device = sample.device
|
416 |
+
|
417 |
+
rks = []
|
418 |
+
D1s = []
|
419 |
+
for i in range(1, order):
|
420 |
+
si = self.step_index - i # pyright: ignore
|
421 |
+
mi = model_output_list[-(i + 1)]
|
422 |
+
alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
|
423 |
+
lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
|
424 |
+
rk = (lambda_si - lambda_s0) / h
|
425 |
+
rks.append(rk)
|
426 |
+
D1s.append((mi - m0) / rk) # pyright: ignore
|
427 |
+
|
428 |
+
rks.append(1.0)
|
429 |
+
rks = torch.tensor(rks, device=device)
|
430 |
+
|
431 |
+
R = []
|
432 |
+
b = []
|
433 |
+
|
434 |
+
hh = -h if self.predict_x0 else h
|
435 |
+
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
|
436 |
+
h_phi_k = h_phi_1 / hh - 1
|
437 |
+
|
438 |
+
factorial_i = 1
|
439 |
+
|
440 |
+
if self.config.solver_type == "bh1":
|
441 |
+
B_h = hh
|
442 |
+
elif self.config.solver_type == "bh2":
|
443 |
+
B_h = torch.expm1(hh)
|
444 |
+
else:
|
445 |
+
raise NotImplementedError()
|
446 |
+
|
447 |
+
for i in range(1, order + 1):
|
448 |
+
R.append(torch.pow(rks, i - 1))
|
449 |
+
b.append(h_phi_k * factorial_i / B_h)
|
450 |
+
factorial_i *= i + 1
|
451 |
+
h_phi_k = h_phi_k / hh - 1 / factorial_i
|
452 |
+
|
453 |
+
R = torch.stack(R)
|
454 |
+
b = torch.tensor(b, device=device)
|
455 |
+
|
456 |
+
if len(D1s) > 0:
|
457 |
+
D1s = torch.stack(D1s, dim=1) # (B, K)
|
458 |
+
# for order 2, we use a simplified version
|
459 |
+
if order == 2:
|
460 |
+
rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device)
|
461 |
+
else:
|
462 |
+
rhos_p = torch.linalg.solve(R[:-1, :-1],
|
463 |
+
b[:-1]).to(device).to(x.dtype)
|
464 |
+
else:
|
465 |
+
D1s = None
|
466 |
+
|
467 |
+
if self.predict_x0:
|
468 |
+
x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
|
469 |
+
if D1s is not None:
|
470 |
+
pred_res = torch.einsum("k,bkc...->bc...", rhos_p,
|
471 |
+
D1s) # pyright: ignore
|
472 |
+
else:
|
473 |
+
pred_res = 0
|
474 |
+
x_t = x_t_ - alpha_t * B_h * pred_res
|
475 |
+
else:
|
476 |
+
x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
|
477 |
+
if D1s is not None:
|
478 |
+
pred_res = torch.einsum("k,bkc...->bc...", rhos_p,
|
479 |
+
D1s) # pyright: ignore
|
480 |
+
else:
|
481 |
+
pred_res = 0
|
482 |
+
x_t = x_t_ - sigma_t * B_h * pred_res
|
483 |
+
|
484 |
+
x_t = x_t.to(x.dtype)
|
485 |
+
return x_t
|
486 |
+
|
487 |
+
def multistep_uni_c_bh_update(
|
488 |
+
self,
|
489 |
+
this_model_output: torch.Tensor,
|
490 |
+
*args,
|
491 |
+
last_sample: torch.Tensor = None,
|
492 |
+
this_sample: torch.Tensor = None,
|
493 |
+
order: int = None, # pyright: ignore
|
494 |
+
**kwargs,
|
495 |
+
) -> torch.Tensor:
|
496 |
+
"""
|
497 |
+
One step for the UniC (B(h) version).
|
498 |
+
|
499 |
+
Args:
|
500 |
+
this_model_output (`torch.Tensor`):
|
501 |
+
The model outputs at `x_t`.
|
502 |
+
this_timestep (`int`):
|
503 |
+
The current timestep `t`.
|
504 |
+
last_sample (`torch.Tensor`):
|
505 |
+
The generated sample before the last predictor `x_{t-1}`.
|
506 |
+
this_sample (`torch.Tensor`):
|
507 |
+
The generated sample after the last predictor `x_{t}`.
|
508 |
+
order (`int`):
|
509 |
+
The `p` of UniC-p at this step. The effective order of accuracy should be `order + 1`.
|
510 |
+
|
511 |
+
Returns:
|
512 |
+
`torch.Tensor`:
|
513 |
+
The corrected sample tensor at the current timestep.
|
514 |
+
"""
|
515 |
+
this_timestep = args[0] if len(args) > 0 else kwargs.pop(
|
516 |
+
"this_timestep", None)
|
517 |
+
if last_sample is None:
|
518 |
+
if len(args) > 1:
|
519 |
+
last_sample = args[1]
|
520 |
+
else:
|
521 |
+
raise ValueError(
|
522 |
+
" missing`last_sample` as a required keyward argument")
|
523 |
+
if this_sample is None:
|
524 |
+
if len(args) > 2:
|
525 |
+
this_sample = args[2]
|
526 |
+
else:
|
527 |
+
raise ValueError(
|
528 |
+
" missing`this_sample` as a required keyward argument")
|
529 |
+
if order is None:
|
530 |
+
if len(args) > 3:
|
531 |
+
order = args[3]
|
532 |
+
else:
|
533 |
+
raise ValueError(
|
534 |
+
" missing`order` as a required keyward argument")
|
535 |
+
if this_timestep is not None:
|
536 |
+
deprecate(
|
537 |
+
"this_timestep",
|
538 |
+
"1.0.0",
|
539 |
+
"Passing `this_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
540 |
+
)
|
541 |
+
|
542 |
+
model_output_list = self.model_outputs
|
543 |
+
|
544 |
+
m0 = model_output_list[-1]
|
545 |
+
x = last_sample
|
546 |
+
x_t = this_sample
|
547 |
+
model_t = this_model_output
|
548 |
+
|
549 |
+
sigma_t, sigma_s0 = self.sigmas[self.step_index], self.sigmas[
|
550 |
+
self.step_index - 1] # pyright: ignore
|
551 |
+
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
552 |
+
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
|
553 |
+
|
554 |
+
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
555 |
+
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
|
556 |
+
|
557 |
+
h = lambda_t - lambda_s0
|
558 |
+
device = this_sample.device
|
559 |
+
|
560 |
+
rks = []
|
561 |
+
D1s = []
|
562 |
+
for i in range(1, order):
|
563 |
+
si = self.step_index - (i + 1) # pyright: ignore
|
564 |
+
mi = model_output_list[-(i + 1)]
|
565 |
+
alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
|
566 |
+
lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
|
567 |
+
rk = (lambda_si - lambda_s0) / h
|
568 |
+
rks.append(rk)
|
569 |
+
D1s.append((mi - m0) / rk) # pyright: ignore
|
570 |
+
|
571 |
+
rks.append(1.0)
|
572 |
+
rks = torch.tensor(rks, device=device)
|
573 |
+
|
574 |
+
R = []
|
575 |
+
b = []
|
576 |
+
|
577 |
+
hh = -h if self.predict_x0 else h
|
578 |
+
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
|
579 |
+
h_phi_k = h_phi_1 / hh - 1
|
580 |
+
|
581 |
+
factorial_i = 1
|
582 |
+
|
583 |
+
if self.config.solver_type == "bh1":
|
584 |
+
B_h = hh
|
585 |
+
elif self.config.solver_type == "bh2":
|
586 |
+
B_h = torch.expm1(hh)
|
587 |
+
else:
|
588 |
+
raise NotImplementedError()
|
589 |
+
|
590 |
+
for i in range(1, order + 1):
|
591 |
+
R.append(torch.pow(rks, i - 1))
|
592 |
+
b.append(h_phi_k * factorial_i / B_h)
|
593 |
+
factorial_i *= i + 1
|
594 |
+
h_phi_k = h_phi_k / hh - 1 / factorial_i
|
595 |
+
|
596 |
+
R = torch.stack(R)
|
597 |
+
b = torch.tensor(b, device=device)
|
598 |
+
|
599 |
+
if len(D1s) > 0:
|
600 |
+
D1s = torch.stack(D1s, dim=1)
|
601 |
+
else:
|
602 |
+
D1s = None
|
603 |
+
|
604 |
+
# for order 1, we use a simplified version
|
605 |
+
if order == 1:
|
606 |
+
rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device)
|
607 |
+
else:
|
608 |
+
rhos_c = torch.linalg.solve(R, b).to(device).to(x.dtype)
|
609 |
+
|
610 |
+
if self.predict_x0:
|
611 |
+
x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
|
612 |
+
if D1s is not None:
|
613 |
+
corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s)
|
614 |
+
else:
|
615 |
+
corr_res = 0
|
616 |
+
D1_t = model_t - m0
|
617 |
+
x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t)
|
618 |
+
else:
|
619 |
+
x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
|
620 |
+
if D1s is not None:
|
621 |
+
corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s)
|
622 |
+
else:
|
623 |
+
corr_res = 0
|
624 |
+
D1_t = model_t - m0
|
625 |
+
x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t)
|
626 |
+
x_t = x_t.to(x.dtype)
|
627 |
+
return x_t
|
628 |
+
|
629 |
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
630 |
+
if schedule_timesteps is None:
|
631 |
+
schedule_timesteps = self.timesteps
|
632 |
+
|
633 |
+
indices = (schedule_timesteps == timestep).nonzero()
|
634 |
+
|
635 |
+
# The sigma index that is taken for the **very** first `step`
|
636 |
+
# is always the second index (or the last index if there is only 1)
|
637 |
+
# This way we can ensure we don't accidentally skip a sigma in
|
638 |
+
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
639 |
+
pos = 1 if len(indices) > 1 else 0
|
640 |
+
|
641 |
+
return indices[pos].item()
|
642 |
+
|
643 |
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
|
644 |
+
def _init_step_index(self, timestep):
|
645 |
+
"""
|
646 |
+
Initialize the step_index counter for the scheduler.
|
647 |
+
"""
|
648 |
+
|
649 |
+
if self.begin_index is None:
|
650 |
+
if isinstance(timestep, torch.Tensor):
|
651 |
+
timestep = timestep.to(self.timesteps.device)
|
652 |
+
self._step_index = self.index_for_timestep(timestep)
|
653 |
+
else:
|
654 |
+
self._step_index = self._begin_index
|
655 |
+
|
656 |
+
def step(self,
|
657 |
+
model_output: torch.Tensor,
|
658 |
+
timestep: Union[int, torch.Tensor],
|
659 |
+
sample: torch.Tensor,
|
660 |
+
return_dict: bool = True,
|
661 |
+
generator=None) -> Union[SchedulerOutput, Tuple]:
|
662 |
+
"""
|
663 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
|
664 |
+
the multistep UniPC.
|
665 |
+
|
666 |
+
Args:
|
667 |
+
model_output (`torch.Tensor`):
|
668 |
+
The direct output from learned diffusion model.
|
669 |
+
timestep (`int`):
|
670 |
+
The current discrete timestep in the diffusion chain.
|
671 |
+
sample (`torch.Tensor`):
|
672 |
+
A current instance of a sample created by the diffusion process.
|
673 |
+
return_dict (`bool`):
|
674 |
+
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
|
675 |
+
|
676 |
+
Returns:
|
677 |
+
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
|
678 |
+
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
|
679 |
+
tuple is returned where the first element is the sample tensor.
|
680 |
+
|
681 |
+
"""
|
682 |
+
if self.num_inference_steps is None:
|
683 |
+
raise ValueError(
|
684 |
+
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
685 |
+
)
|
686 |
+
|
687 |
+
if self.step_index is None:
|
688 |
+
self._init_step_index(timestep)
|
689 |
+
|
690 |
+
print("self.step_index ==> ", self.step_index)
|
691 |
+
|
692 |
+
use_corrector = (
|
693 |
+
self.step_index > 0 and
|
694 |
+
self.step_index - 1 not in self.disable_corrector and
|
695 |
+
self.last_sample is not None # pyright: ignore
|
696 |
+
)
|
697 |
+
|
698 |
+
model_output_convert = self.convert_model_output(model_output, sample=sample)
|
699 |
+
|
700 |
+
if use_corrector:
|
701 |
+
sample = self.multistep_uni_c_bh_update(
|
702 |
+
this_model_output=model_output_convert,
|
703 |
+
last_sample=self.last_sample,
|
704 |
+
this_sample=sample,
|
705 |
+
order=self.this_order,
|
706 |
+
)
|
707 |
+
|
708 |
+
for i in range(self.config.solver_order - 1):
|
709 |
+
self.model_outputs[i] = self.model_outputs[i + 1]
|
710 |
+
self.timestep_list[i] = self.timestep_list[i + 1]
|
711 |
+
|
712 |
+
self.model_outputs[-1] = model_output_convert
|
713 |
+
self.timestep_list[-1] = timestep # pyright: ignore
|
714 |
+
|
715 |
+
if self.config.lower_order_final:
|
716 |
+
this_order = min(self.config.solver_order,
|
717 |
+
len(self.timesteps) -
|
718 |
+
self.step_index) # pyright: ignore
|
719 |
+
else:
|
720 |
+
this_order = self.config.solver_order
|
721 |
+
|
722 |
+
self.this_order = min(this_order,
|
723 |
+
self.lower_order_nums + 1) # warmup for multistep
|
724 |
+
assert self.this_order > 0
|
725 |
+
|
726 |
+
self.last_sample = sample
|
727 |
+
prev_sample = self.multistep_uni_p_bh_update(
|
728 |
+
model_output=model_output, # pass the original non-converted model output, in case solver-p is used
|
729 |
+
sample=sample,
|
730 |
+
order=self.this_order,
|
731 |
+
)
|
732 |
+
|
733 |
+
if self.lower_order_nums < self.config.solver_order:
|
734 |
+
self.lower_order_nums += 1
|
735 |
+
|
736 |
+
# upon completion increase step index by one
|
737 |
+
self._step_index += 1 # pyright: ignore
|
738 |
+
|
739 |
+
if not return_dict:
|
740 |
+
return (prev_sample, model_output_convert)
|
741 |
+
|
742 |
+
return SchedulerOutput(prev_sample=prev_sample)
|
743 |
+
|
744 |
+
def scale_model_input(self, sample: torch.Tensor, *args,
|
745 |
+
**kwargs) -> torch.Tensor:
|
746 |
+
"""
|
747 |
+
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
748 |
+
current timestep.
|
749 |
+
|
750 |
+
Args:
|
751 |
+
sample (`torch.Tensor`):
|
752 |
+
The input sample.
|
753 |
+
|
754 |
+
Returns:
|
755 |
+
`torch.Tensor`:
|
756 |
+
A scaled input sample.
|
757 |
+
"""
|
758 |
+
return sample
|
759 |
+
|
760 |
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
|
761 |
+
def add_noise(
|
762 |
+
self,
|
763 |
+
original_samples: torch.Tensor,
|
764 |
+
noise: torch.Tensor,
|
765 |
+
timesteps: torch.IntTensor,
|
766 |
+
) -> torch.Tensor:
|
767 |
+
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
768 |
+
sigmas = self.sigmas.to(
|
769 |
+
device=original_samples.device, dtype=original_samples.dtype)
|
770 |
+
if original_samples.device.type == "mps" and torch.is_floating_point(
|
771 |
+
timesteps):
|
772 |
+
# mps does not support float64
|
773 |
+
schedule_timesteps = self.timesteps.to(
|
774 |
+
original_samples.device, dtype=torch.float32)
|
775 |
+
timesteps = timesteps.to(
|
776 |
+
original_samples.device, dtype=torch.float32)
|
777 |
+
else:
|
778 |
+
schedule_timesteps = self.timesteps.to(original_samples.device)
|
779 |
+
timesteps = timesteps.to(original_samples.device)
|
780 |
+
|
781 |
+
# begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
|
782 |
+
if self.begin_index is None:
|
783 |
+
step_indices = [
|
784 |
+
self.index_for_timestep(t, schedule_timesteps)
|
785 |
+
for t in timesteps
|
786 |
+
]
|
787 |
+
elif self.step_index is not None:
|
788 |
+
# add_noise is called after first denoising step (for inpainting)
|
789 |
+
step_indices = [self.step_index] * timesteps.shape[0]
|
790 |
+
else:
|
791 |
+
# add noise is called before first denoising step to create initial latent(img2img)
|
792 |
+
step_indices = [self.begin_index] * timesteps.shape[0]
|
793 |
+
|
794 |
+
sigma = sigmas[step_indices].flatten()
|
795 |
+
while len(sigma.shape) < len(original_samples.shape):
|
796 |
+
sigma = sigma.unsqueeze(-1)
|
797 |
+
|
798 |
+
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
|
799 |
+
noisy_samples = alpha_t * original_samples + sigma_t * noise
|
800 |
+
return noisy_samples
|
801 |
+
|
802 |
+
def __len__(self):
|
803 |
+
return self.config.num_train_timesteps
|
wan/utils/prompt_extend.py
ADDED
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import json
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
import random
|
6 |
+
import sys
|
7 |
+
import tempfile
|
8 |
+
from dataclasses import dataclass
|
9 |
+
from http import HTTPStatus
|
10 |
+
from typing import Optional, Union
|
11 |
+
|
12 |
+
import dashscope
|
13 |
+
import torch
|
14 |
+
from PIL import Image
|
15 |
+
|
16 |
+
try:
|
17 |
+
from flash_attn import flash_attn_varlen_func
|
18 |
+
FLASH_VER = 2
|
19 |
+
except ModuleNotFoundError:
|
20 |
+
flash_attn_varlen_func = None # in compatible with CPU machines
|
21 |
+
FLASH_VER = None
|
22 |
+
|
23 |
+
LM_EN_SYS_PROMPT = "You are an advanced AI model tasked with generating and extending structured and detailed video captions. You must respond in the language used by the user."
|
24 |
+
|
25 |
+
@dataclass
|
26 |
+
class PromptOutput(object):
|
27 |
+
status: bool
|
28 |
+
prompt: str
|
29 |
+
seed: int
|
30 |
+
system_prompt: str
|
31 |
+
message: str
|
32 |
+
|
33 |
+
def add_custom_field(self, key: str, value) -> None:
|
34 |
+
self.__setattr__(key, value)
|
35 |
+
|
36 |
+
|
37 |
+
class PromptExpander:
|
38 |
+
|
39 |
+
def __init__(self, model_name, is_vl=False, device=0, **kwargs):
|
40 |
+
self.model_name = model_name
|
41 |
+
self.is_vl = is_vl
|
42 |
+
self.device = device
|
43 |
+
|
44 |
+
def extend_with_img(self,
|
45 |
+
prompt,
|
46 |
+
system_prompt,
|
47 |
+
image=None,
|
48 |
+
seed=-1,
|
49 |
+
*args,
|
50 |
+
**kwargs):
|
51 |
+
pass
|
52 |
+
|
53 |
+
def extend(self, prompt, system_prompt, seed=-1, *args, **kwargs):
|
54 |
+
pass
|
55 |
+
|
56 |
+
def decide_system_prompt(self, tar_lang="en"):
|
57 |
+
return LM_EN_SYS_PROMPT
|
58 |
+
|
59 |
+
def __call__(self,
|
60 |
+
prompt,
|
61 |
+
tar_lang="en",
|
62 |
+
image=None,
|
63 |
+
seed=-1,
|
64 |
+
*args,
|
65 |
+
**kwargs):
|
66 |
+
system_prompt = self.decide_system_prompt(tar_lang=tar_lang)
|
67 |
+
if seed < 0:
|
68 |
+
seed = random.randint(0, sys.maxsize)
|
69 |
+
if image is not None and self.is_vl:
|
70 |
+
return self.extend_with_img(
|
71 |
+
prompt, system_prompt, image=image, seed=seed, *args, **kwargs)
|
72 |
+
elif not self.is_vl:
|
73 |
+
return self.extend(prompt, system_prompt, seed, *args, **kwargs)
|
74 |
+
else:
|
75 |
+
raise NotImplementedError
|
76 |
+
|
77 |
+
|
78 |
+
class QwenPromptExpander(PromptExpander):
|
79 |
+
|
80 |
+
def __init__(self, model_name=None, device=0, is_vl=False, **kwargs):
|
81 |
+
'''
|
82 |
+
Args:
|
83 |
+
model_name: Use predefined model names such as 'QwenVL2.5_7B' and 'Qwen2.5_14B',
|
84 |
+
which are specific versions of the Qwen model. Alternatively, you can use the
|
85 |
+
local path to a downloaded model or the model name from Hugging Face."
|
86 |
+
Detailed Breakdown:
|
87 |
+
Predefined Model Names:
|
88 |
+
* 'QwenVL2.5_7B' and 'Qwen2.5_14B' are specific versions of the Qwen model.
|
89 |
+
Local Path:
|
90 |
+
* You can provide the path to a model that you have downloaded locally.
|
91 |
+
Hugging Face Model Name:
|
92 |
+
* You can also specify the model name from Hugging Face's model hub.
|
93 |
+
is_vl: A flag indicating whether the task involves visual-language processing.
|
94 |
+
**kwargs: Additional keyword arguments that can be passed to the function or method.
|
95 |
+
'''
|
96 |
+
if model_name is None:
|
97 |
+
model_name = 'ZuluVision/MoviiGen1.1_Prompt_Rewriter'
|
98 |
+
super().__init__(model_name, is_vl, device, **kwargs)
|
99 |
+
self.model_name = model_name
|
100 |
+
|
101 |
+
if self.is_vl:
|
102 |
+
raise NotImplementedError("VL is not supported")
|
103 |
+
|
104 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
105 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
106 |
+
self.model_name,
|
107 |
+
torch_dtype=torch.float16
|
108 |
+
if "AWQ" in self.model_name else "auto",
|
109 |
+
attn_implementation="flash_attention_2"
|
110 |
+
if FLASH_VER == 2 else None,
|
111 |
+
device_map="cpu")
|
112 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
113 |
+
|
114 |
+
def extend(self, prompt, system_prompt, seed=-1, *args, **kwargs):
|
115 |
+
self.model = self.model.to(self.device)
|
116 |
+
messages = [{
|
117 |
+
"role": "system",
|
118 |
+
"content": system_prompt
|
119 |
+
}, {
|
120 |
+
"role": "user",
|
121 |
+
"content": prompt
|
122 |
+
}]
|
123 |
+
text = self.tokenizer.apply_chat_template(
|
124 |
+
messages, tokenize=False, add_generation_prompt=True)
|
125 |
+
model_inputs = self.tokenizer([text],
|
126 |
+
return_tensors="pt").to(self.model.device)
|
127 |
+
|
128 |
+
generated_ids = self.model.generate(**model_inputs, max_new_tokens=512)
|
129 |
+
generated_ids = [
|
130 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(
|
131 |
+
model_inputs.input_ids, generated_ids)
|
132 |
+
]
|
133 |
+
|
134 |
+
expanded_prompt = self.tokenizer.batch_decode(
|
135 |
+
generated_ids, skip_special_tokens=True)[0]
|
136 |
+
self.model = self.model.to("cpu")
|
137 |
+
return PromptOutput(
|
138 |
+
status=True,
|
139 |
+
prompt=expanded_prompt,
|
140 |
+
seed=seed,
|
141 |
+
system_prompt=system_prompt,
|
142 |
+
message=json.dumps({"content": expanded_prompt},
|
143 |
+
ensure_ascii=False))
|
144 |
+
|
145 |
+
def extend_with_img(self,
|
146 |
+
prompt,
|
147 |
+
system_prompt,
|
148 |
+
image: Union[Image.Image, str] = None,
|
149 |
+
seed=-1,
|
150 |
+
*args,
|
151 |
+
**kwargs):
|
152 |
+
self.model = self.model.to(self.device)
|
153 |
+
messages = [{
|
154 |
+
'role': 'system',
|
155 |
+
'content': [{
|
156 |
+
"type": "text",
|
157 |
+
"text": system_prompt
|
158 |
+
}]
|
159 |
+
}, {
|
160 |
+
"role":
|
161 |
+
"user",
|
162 |
+
"content": [
|
163 |
+
{
|
164 |
+
"type": "image",
|
165 |
+
"image": image,
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"type": "text",
|
169 |
+
"text": prompt
|
170 |
+
},
|
171 |
+
],
|
172 |
+
}]
|
173 |
+
|
174 |
+
# Preparation for inference
|
175 |
+
text = self.processor.apply_chat_template(
|
176 |
+
messages, tokenize=False, add_generation_prompt=True)
|
177 |
+
image_inputs, video_inputs = self.process_vision_info(messages)
|
178 |
+
inputs = self.processor(
|
179 |
+
text=[text],
|
180 |
+
images=image_inputs,
|
181 |
+
videos=video_inputs,
|
182 |
+
padding=True,
|
183 |
+
return_tensors="pt",
|
184 |
+
)
|
185 |
+
inputs = inputs.to(self.device)
|
186 |
+
|
187 |
+
# Inference: Generation of the output
|
188 |
+
generated_ids = self.model.generate(**inputs, max_new_tokens=512)
|
189 |
+
generated_ids_trimmed = [
|
190 |
+
out_ids[len(in_ids):]
|
191 |
+
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
192 |
+
]
|
193 |
+
expanded_prompt = self.processor.batch_decode(
|
194 |
+
generated_ids_trimmed,
|
195 |
+
skip_special_tokens=True,
|
196 |
+
clean_up_tokenization_spaces=False)[0]
|
197 |
+
self.model = self.model.to("cpu")
|
198 |
+
return PromptOutput(
|
199 |
+
status=True,
|
200 |
+
prompt=expanded_prompt,
|
201 |
+
seed=seed,
|
202 |
+
system_prompt=system_prompt,
|
203 |
+
message=json.dumps({"content": expanded_prompt},
|
204 |
+
ensure_ascii=False))
|
205 |
+
|
206 |
+
|
207 |
+
if __name__ == "__main__":
|
208 |
+
|
209 |
+
seed = 100
|
210 |
+
prompt = "夏日海滩度假风格,一只戴着墨镜的白色猫咪坐在冲浪板上。猫咪毛发蓬松,表情悠闲,直视镜头。背景是模糊的海滩景色,海水清澈,远处有绿色的山丘和蓝天白云。猫咪的姿态自然放松,仿佛在享受海风和阳光。近景特写,强调猫咪的细节和海滩的清新氛围。"
|
211 |
+
en_prompt = "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
|
212 |
+
# test cases for prompt extend
|
213 |
+
ds_model_name = "qwen-plus"
|
214 |
+
# for qwenmodel, you can download the model form modelscope or huggingface and use the model path as model_name
|
215 |
+
qwen_model_name = "./models/Qwen2.5-14B-Instruct/" # VRAM: 29136MiB
|
216 |
+
# qwen_model_name = "./models/Qwen2.5-14B-Instruct-AWQ/" # VRAM: 10414MiB
|
217 |
+
|
218 |
+
# test dashscope api
|
219 |
+
dashscope_prompt_expander = DashScopePromptExpander(
|
220 |
+
model_name=ds_model_name)
|
221 |
+
dashscope_result = dashscope_prompt_expander(prompt, tar_lang="ch")
|
222 |
+
print("LM dashscope result -> ch",
|
223 |
+
dashscope_result.prompt) #dashscope_result.system_prompt)
|
224 |
+
dashscope_result = dashscope_prompt_expander(prompt, tar_lang="en")
|
225 |
+
print("LM dashscope result -> en",
|
226 |
+
dashscope_result.prompt) #dashscope_result.system_prompt)
|
227 |
+
dashscope_result = dashscope_prompt_expander(en_prompt, tar_lang="ch")
|
228 |
+
print("LM dashscope en result -> ch",
|
229 |
+
dashscope_result.prompt) #dashscope_result.system_prompt)
|
230 |
+
dashscope_result = dashscope_prompt_expander(en_prompt, tar_lang="en")
|
231 |
+
print("LM dashscope en result -> en",
|
232 |
+
dashscope_result.prompt) #dashscope_result.system_prompt)
|
233 |
+
# # test qwen api
|
234 |
+
qwen_prompt_expander = QwenPromptExpander(
|
235 |
+
model_name=qwen_model_name, is_vl=False, device=0)
|
236 |
+
qwen_result = qwen_prompt_expander(prompt, tar_lang="ch")
|
237 |
+
print("LM qwen result -> ch",
|
238 |
+
qwen_result.prompt) #qwen_result.system_prompt)
|
239 |
+
qwen_result = qwen_prompt_expander(prompt, tar_lang="en")
|
240 |
+
print("LM qwen result -> en",
|
241 |
+
qwen_result.prompt) # qwen_result.system_prompt)
|
242 |
+
qwen_result = qwen_prompt_expander(en_prompt, tar_lang="ch")
|
243 |
+
print("LM qwen en result -> ch",
|
244 |
+
qwen_result.prompt) #, qwen_result.system_prompt)
|
245 |
+
qwen_result = qwen_prompt_expander(en_prompt, tar_lang="en")
|
246 |
+
print("LM qwen en result -> en",
|
247 |
+
qwen_result.prompt) # , qwen_result.system_prompt)
|
248 |
+
# test case for prompt-image extend
|
249 |
+
ds_model_name = "qwen-vl-max"
|
250 |
+
#qwen_model_name = "./models/Qwen2.5-VL-3B-Instruct/" #VRAM: 9686MiB
|
251 |
+
qwen_model_name = "./models/Qwen2.5-VL-7B-Instruct-AWQ/" # VRAM: 8492
|
252 |
+
image = "./examples/i2v_input.JPG"
|
253 |
+
|
254 |
+
# test dashscope api why image_path is local directory; skip
|
255 |
+
dashscope_prompt_expander = DashScopePromptExpander(
|
256 |
+
model_name=ds_model_name, is_vl=True)
|
257 |
+
dashscope_result = dashscope_prompt_expander(
|
258 |
+
prompt, tar_lang="ch", image=image, seed=seed)
|
259 |
+
print("VL dashscope result -> ch",
|
260 |
+
dashscope_result.prompt) #, dashscope_result.system_prompt)
|
261 |
+
dashscope_result = dashscope_prompt_expander(
|
262 |
+
prompt, tar_lang="en", image=image, seed=seed)
|
263 |
+
print("VL dashscope result -> en",
|
264 |
+
dashscope_result.prompt) # , dashscope_result.system_prompt)
|
265 |
+
dashscope_result = dashscope_prompt_expander(
|
266 |
+
en_prompt, tar_lang="ch", image=image, seed=seed)
|
267 |
+
print("VL dashscope en result -> ch",
|
268 |
+
dashscope_result.prompt) #, dashscope_result.system_prompt)
|
269 |
+
dashscope_result = dashscope_prompt_expander(
|
270 |
+
en_prompt, tar_lang="en", image=image, seed=seed)
|
271 |
+
print("VL dashscope en result -> en",
|
272 |
+
dashscope_result.prompt) # , dashscope_result.system_prompt)
|
273 |
+
# test qwen api
|
274 |
+
qwen_prompt_expander = QwenPromptExpander(
|
275 |
+
model_name=qwen_model_name, is_vl=True, device=0)
|
276 |
+
qwen_result = qwen_prompt_expander(
|
277 |
+
prompt, tar_lang="ch", image=image, seed=seed)
|
278 |
+
print("VL qwen result -> ch",
|
279 |
+
qwen_result.prompt) #, qwen_result.system_prompt)
|
280 |
+
qwen_result = qwen_prompt_expander(
|
281 |
+
prompt, tar_lang="en", image=image, seed=seed)
|
282 |
+
print("VL qwen result ->en",
|
283 |
+
qwen_result.prompt) # , qwen_result.system_prompt)
|
284 |
+
qwen_result = qwen_prompt_expander(
|
285 |
+
en_prompt, tar_lang="ch", image=image, seed=seed)
|
286 |
+
print("VL qwen vl en result -> ch",
|
287 |
+
qwen_result.prompt) #, qwen_result.system_prompt)
|
288 |
+
qwen_result = qwen_prompt_expander(
|
289 |
+
en_prompt, tar_lang="en", image=image, seed=seed)
|
290 |
+
print("VL qwen vl en result -> en",
|
291 |
+
qwen_result.prompt) # , qwen_result.system_prompt)
|
wan/utils/qwen_vl_utils.py
ADDED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copied from https://github.com/kq-chen/qwen-vl-utils
|
2 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import base64
|
6 |
+
import logging
|
7 |
+
import math
|
8 |
+
import os
|
9 |
+
import sys
|
10 |
+
import time
|
11 |
+
import warnings
|
12 |
+
from functools import lru_cache
|
13 |
+
from io import BytesIO
|
14 |
+
|
15 |
+
import requests
|
16 |
+
import torch
|
17 |
+
import torchvision
|
18 |
+
from packaging import version
|
19 |
+
from PIL import Image
|
20 |
+
from torchvision import io, transforms
|
21 |
+
from torchvision.transforms import InterpolationMode
|
22 |
+
|
23 |
+
logger = logging.getLogger(__name__)
|
24 |
+
|
25 |
+
IMAGE_FACTOR = 28
|
26 |
+
MIN_PIXELS = 4 * 28 * 28
|
27 |
+
MAX_PIXELS = 16384 * 28 * 28
|
28 |
+
MAX_RATIO = 200
|
29 |
+
|
30 |
+
VIDEO_MIN_PIXELS = 128 * 28 * 28
|
31 |
+
VIDEO_MAX_PIXELS = 768 * 28 * 28
|
32 |
+
VIDEO_TOTAL_PIXELS = 24576 * 28 * 28
|
33 |
+
FRAME_FACTOR = 2
|
34 |
+
FPS = 2.0
|
35 |
+
FPS_MIN_FRAMES = 4
|
36 |
+
FPS_MAX_FRAMES = 768
|
37 |
+
|
38 |
+
|
39 |
+
def round_by_factor(number: int, factor: int) -> int:
|
40 |
+
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
41 |
+
return round(number / factor) * factor
|
42 |
+
|
43 |
+
|
44 |
+
def ceil_by_factor(number: int, factor: int) -> int:
|
45 |
+
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
|
46 |
+
return math.ceil(number / factor) * factor
|
47 |
+
|
48 |
+
|
49 |
+
def floor_by_factor(number: int, factor: int) -> int:
|
50 |
+
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
|
51 |
+
return math.floor(number / factor) * factor
|
52 |
+
|
53 |
+
|
54 |
+
def smart_resize(height: int,
|
55 |
+
width: int,
|
56 |
+
factor: int = IMAGE_FACTOR,
|
57 |
+
min_pixels: int = MIN_PIXELS,
|
58 |
+
max_pixels: int = MAX_PIXELS) -> tuple[int, int]:
|
59 |
+
"""
|
60 |
+
Rescales the image so that the following conditions are met:
|
61 |
+
|
62 |
+
1. Both dimensions (height and width) are divisible by 'factor'.
|
63 |
+
|
64 |
+
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
65 |
+
|
66 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
67 |
+
"""
|
68 |
+
if max(height, width) / min(height, width) > MAX_RATIO:
|
69 |
+
raise ValueError(
|
70 |
+
f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}"
|
71 |
+
)
|
72 |
+
h_bar = max(factor, round_by_factor(height, factor))
|
73 |
+
w_bar = max(factor, round_by_factor(width, factor))
|
74 |
+
if h_bar * w_bar > max_pixels:
|
75 |
+
beta = math.sqrt((height * width) / max_pixels)
|
76 |
+
h_bar = floor_by_factor(height / beta, factor)
|
77 |
+
w_bar = floor_by_factor(width / beta, factor)
|
78 |
+
elif h_bar * w_bar < min_pixels:
|
79 |
+
beta = math.sqrt(min_pixels / (height * width))
|
80 |
+
h_bar = ceil_by_factor(height * beta, factor)
|
81 |
+
w_bar = ceil_by_factor(width * beta, factor)
|
82 |
+
return h_bar, w_bar
|
83 |
+
|
84 |
+
|
85 |
+
def fetch_image(ele: dict[str, str | Image.Image],
|
86 |
+
size_factor: int = IMAGE_FACTOR) -> Image.Image:
|
87 |
+
if "image" in ele:
|
88 |
+
image = ele["image"]
|
89 |
+
else:
|
90 |
+
image = ele["image_url"]
|
91 |
+
image_obj = None
|
92 |
+
if isinstance(image, Image.Image):
|
93 |
+
image_obj = image
|
94 |
+
elif image.startswith("http://") or image.startswith("https://"):
|
95 |
+
image_obj = Image.open(requests.get(image, stream=True).raw)
|
96 |
+
elif image.startswith("file://"):
|
97 |
+
image_obj = Image.open(image[7:])
|
98 |
+
elif image.startswith("data:image"):
|
99 |
+
if "base64," in image:
|
100 |
+
_, base64_data = image.split("base64,", 1)
|
101 |
+
data = base64.b64decode(base64_data)
|
102 |
+
image_obj = Image.open(BytesIO(data))
|
103 |
+
else:
|
104 |
+
image_obj = Image.open(image)
|
105 |
+
if image_obj is None:
|
106 |
+
raise ValueError(
|
107 |
+
f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}"
|
108 |
+
)
|
109 |
+
image = image_obj.convert("RGB")
|
110 |
+
## resize
|
111 |
+
if "resized_height" in ele and "resized_width" in ele:
|
112 |
+
resized_height, resized_width = smart_resize(
|
113 |
+
ele["resized_height"],
|
114 |
+
ele["resized_width"],
|
115 |
+
factor=size_factor,
|
116 |
+
)
|
117 |
+
else:
|
118 |
+
width, height = image.size
|
119 |
+
min_pixels = ele.get("min_pixels", MIN_PIXELS)
|
120 |
+
max_pixels = ele.get("max_pixels", MAX_PIXELS)
|
121 |
+
resized_height, resized_width = smart_resize(
|
122 |
+
height,
|
123 |
+
width,
|
124 |
+
factor=size_factor,
|
125 |
+
min_pixels=min_pixels,
|
126 |
+
max_pixels=max_pixels,
|
127 |
+
)
|
128 |
+
image = image.resize((resized_width, resized_height))
|
129 |
+
|
130 |
+
return image
|
131 |
+
|
132 |
+
|
133 |
+
def smart_nframes(
|
134 |
+
ele: dict,
|
135 |
+
total_frames: int,
|
136 |
+
video_fps: int | float,
|
137 |
+
) -> int:
|
138 |
+
"""calculate the number of frames for video used for model inputs.
|
139 |
+
|
140 |
+
Args:
|
141 |
+
ele (dict): a dict contains the configuration of video.
|
142 |
+
support either `fps` or `nframes`:
|
143 |
+
- nframes: the number of frames to extract for model inputs.
|
144 |
+
- fps: the fps to extract frames for model inputs.
|
145 |
+
- min_frames: the minimum number of frames of the video, only used when fps is provided.
|
146 |
+
- max_frames: the maximum number of frames of the video, only used when fps is provided.
|
147 |
+
total_frames (int): the original total number of frames of the video.
|
148 |
+
video_fps (int | float): the original fps of the video.
|
149 |
+
|
150 |
+
Raises:
|
151 |
+
ValueError: nframes should in interval [FRAME_FACTOR, total_frames].
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
int: the number of frames for video used for model inputs.
|
155 |
+
"""
|
156 |
+
assert not ("fps" in ele and
|
157 |
+
"nframes" in ele), "Only accept either `fps` or `nframes`"
|
158 |
+
if "nframes" in ele:
|
159 |
+
nframes = round_by_factor(ele["nframes"], FRAME_FACTOR)
|
160 |
+
else:
|
161 |
+
fps = ele.get("fps", FPS)
|
162 |
+
min_frames = ceil_by_factor(
|
163 |
+
ele.get("min_frames", FPS_MIN_FRAMES), FRAME_FACTOR)
|
164 |
+
max_frames = floor_by_factor(
|
165 |
+
ele.get("max_frames", min(FPS_MAX_FRAMES, total_frames)),
|
166 |
+
FRAME_FACTOR)
|
167 |
+
nframes = total_frames / video_fps * fps
|
168 |
+
nframes = min(max(nframes, min_frames), max_frames)
|
169 |
+
nframes = round_by_factor(nframes, FRAME_FACTOR)
|
170 |
+
if not (FRAME_FACTOR <= nframes and nframes <= total_frames):
|
171 |
+
raise ValueError(
|
172 |
+
f"nframes should in interval [{FRAME_FACTOR}, {total_frames}], but got {nframes}."
|
173 |
+
)
|
174 |
+
return nframes
|
175 |
+
|
176 |
+
|
177 |
+
def _read_video_torchvision(ele: dict,) -> torch.Tensor:
|
178 |
+
"""read video using torchvision.io.read_video
|
179 |
+
|
180 |
+
Args:
|
181 |
+
ele (dict): a dict contains the configuration of video.
|
182 |
+
support keys:
|
183 |
+
- video: the path of video. support "file://", "http://", "https://" and local path.
|
184 |
+
- video_start: the start time of video.
|
185 |
+
- video_end: the end time of video.
|
186 |
+
Returns:
|
187 |
+
torch.Tensor: the video tensor with shape (T, C, H, W).
|
188 |
+
"""
|
189 |
+
video_path = ele["video"]
|
190 |
+
if version.parse(torchvision.__version__) < version.parse("0.19.0"):
|
191 |
+
if "http://" in video_path or "https://" in video_path:
|
192 |
+
warnings.warn(
|
193 |
+
"torchvision < 0.19.0 does not support http/https video path, please upgrade to 0.19.0."
|
194 |
+
)
|
195 |
+
if "file://" in video_path:
|
196 |
+
video_path = video_path[7:]
|
197 |
+
st = time.time()
|
198 |
+
video, audio, info = io.read_video(
|
199 |
+
video_path,
|
200 |
+
start_pts=ele.get("video_start", 0.0),
|
201 |
+
end_pts=ele.get("video_end", None),
|
202 |
+
pts_unit="sec",
|
203 |
+
output_format="TCHW",
|
204 |
+
)
|
205 |
+
total_frames, video_fps = video.size(0), info["video_fps"]
|
206 |
+
logger.info(
|
207 |
+
f"torchvision: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s"
|
208 |
+
)
|
209 |
+
nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
|
210 |
+
idx = torch.linspace(0, total_frames - 1, nframes).round().long()
|
211 |
+
video = video[idx]
|
212 |
+
return video
|
213 |
+
|
214 |
+
|
215 |
+
def is_decord_available() -> bool:
|
216 |
+
import importlib.util
|
217 |
+
|
218 |
+
return importlib.util.find_spec("decord") is not None
|
219 |
+
|
220 |
+
|
221 |
+
def _read_video_decord(ele: dict,) -> torch.Tensor:
|
222 |
+
"""read video using decord.VideoReader
|
223 |
+
|
224 |
+
Args:
|
225 |
+
ele (dict): a dict contains the configuration of video.
|
226 |
+
support keys:
|
227 |
+
- video: the path of video. support "file://", "http://", "https://" and local path.
|
228 |
+
- video_start: the start time of video.
|
229 |
+
- video_end: the end time of video.
|
230 |
+
Returns:
|
231 |
+
torch.Tensor: the video tensor with shape (T, C, H, W).
|
232 |
+
"""
|
233 |
+
import decord
|
234 |
+
video_path = ele["video"]
|
235 |
+
st = time.time()
|
236 |
+
vr = decord.VideoReader(video_path)
|
237 |
+
# TODO: support start_pts and end_pts
|
238 |
+
if 'video_start' in ele or 'video_end' in ele:
|
239 |
+
raise NotImplementedError(
|
240 |
+
"not support start_pts and end_pts in decord for now.")
|
241 |
+
total_frames, video_fps = len(vr), vr.get_avg_fps()
|
242 |
+
logger.info(
|
243 |
+
f"decord: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s"
|
244 |
+
)
|
245 |
+
nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
|
246 |
+
idx = torch.linspace(0, total_frames - 1, nframes).round().long().tolist()
|
247 |
+
video = vr.get_batch(idx).asnumpy()
|
248 |
+
video = torch.tensor(video).permute(0, 3, 1, 2) # Convert to TCHW format
|
249 |
+
return video
|
250 |
+
|
251 |
+
|
252 |
+
VIDEO_READER_BACKENDS = {
|
253 |
+
"decord": _read_video_decord,
|
254 |
+
"torchvision": _read_video_torchvision,
|
255 |
+
}
|
256 |
+
|
257 |
+
FORCE_QWENVL_VIDEO_READER = os.getenv("FORCE_QWENVL_VIDEO_READER", None)
|
258 |
+
|
259 |
+
|
260 |
+
@lru_cache(maxsize=1)
|
261 |
+
def get_video_reader_backend() -> str:
|
262 |
+
if FORCE_QWENVL_VIDEO_READER is not None:
|
263 |
+
video_reader_backend = FORCE_QWENVL_VIDEO_READER
|
264 |
+
elif is_decord_available():
|
265 |
+
video_reader_backend = "decord"
|
266 |
+
else:
|
267 |
+
video_reader_backend = "torchvision"
|
268 |
+
print(
|
269 |
+
f"qwen-vl-utils using {video_reader_backend} to read video.",
|
270 |
+
file=sys.stderr)
|
271 |
+
return video_reader_backend
|
272 |
+
|
273 |
+
|
274 |
+
def fetch_video(
|
275 |
+
ele: dict,
|
276 |
+
image_factor: int = IMAGE_FACTOR) -> torch.Tensor | list[Image.Image]:
|
277 |
+
if isinstance(ele["video"], str):
|
278 |
+
video_reader_backend = get_video_reader_backend()
|
279 |
+
video = VIDEO_READER_BACKENDS[video_reader_backend](ele)
|
280 |
+
nframes, _, height, width = video.shape
|
281 |
+
|
282 |
+
min_pixels = ele.get("min_pixels", VIDEO_MIN_PIXELS)
|
283 |
+
total_pixels = ele.get("total_pixels", VIDEO_TOTAL_PIXELS)
|
284 |
+
max_pixels = max(
|
285 |
+
min(VIDEO_MAX_PIXELS, total_pixels / nframes * FRAME_FACTOR),
|
286 |
+
int(min_pixels * 1.05))
|
287 |
+
max_pixels = ele.get("max_pixels", max_pixels)
|
288 |
+
if "resized_height" in ele and "resized_width" in ele:
|
289 |
+
resized_height, resized_width = smart_resize(
|
290 |
+
ele["resized_height"],
|
291 |
+
ele["resized_width"],
|
292 |
+
factor=image_factor,
|
293 |
+
)
|
294 |
+
else:
|
295 |
+
resized_height, resized_width = smart_resize(
|
296 |
+
height,
|
297 |
+
width,
|
298 |
+
factor=image_factor,
|
299 |
+
min_pixels=min_pixels,
|
300 |
+
max_pixels=max_pixels,
|
301 |
+
)
|
302 |
+
video = transforms.functional.resize(
|
303 |
+
video,
|
304 |
+
[resized_height, resized_width],
|
305 |
+
interpolation=InterpolationMode.BICUBIC,
|
306 |
+
antialias=True,
|
307 |
+
).float()
|
308 |
+
return video
|
309 |
+
else:
|
310 |
+
assert isinstance(ele["video"], (list, tuple))
|
311 |
+
process_info = ele.copy()
|
312 |
+
process_info.pop("type", None)
|
313 |
+
process_info.pop("video", None)
|
314 |
+
images = [
|
315 |
+
fetch_image({
|
316 |
+
"image": video_element,
|
317 |
+
**process_info
|
318 |
+
},
|
319 |
+
size_factor=image_factor)
|
320 |
+
for video_element in ele["video"]
|
321 |
+
]
|
322 |
+
nframes = ceil_by_factor(len(images), FRAME_FACTOR)
|
323 |
+
if len(images) < nframes:
|
324 |
+
images.extend([images[-1]] * (nframes - len(images)))
|
325 |
+
return images
|
326 |
+
|
327 |
+
|
328 |
+
def extract_vision_info(
|
329 |
+
conversations: list[dict] | list[list[dict]]) -> list[dict]:
|
330 |
+
vision_infos = []
|
331 |
+
if isinstance(conversations[0], dict):
|
332 |
+
conversations = [conversations]
|
333 |
+
for conversation in conversations:
|
334 |
+
for message in conversation:
|
335 |
+
if isinstance(message["content"], list):
|
336 |
+
for ele in message["content"]:
|
337 |
+
if ("image" in ele or "image_url" in ele or
|
338 |
+
"video" in ele or
|
339 |
+
ele["type"] in ("image", "image_url", "video")):
|
340 |
+
vision_infos.append(ele)
|
341 |
+
return vision_infos
|
342 |
+
|
343 |
+
|
344 |
+
def process_vision_info(
|
345 |
+
conversations: list[dict] | list[list[dict]],
|
346 |
+
) -> tuple[list[Image.Image] | None, list[torch.Tensor | list[Image.Image]] |
|
347 |
+
None]:
|
348 |
+
vision_infos = extract_vision_info(conversations)
|
349 |
+
## Read images or videos
|
350 |
+
image_inputs = []
|
351 |
+
video_inputs = []
|
352 |
+
for vision_info in vision_infos:
|
353 |
+
if "image" in vision_info or "image_url" in vision_info:
|
354 |
+
image_inputs.append(fetch_image(vision_info))
|
355 |
+
elif "video" in vision_info:
|
356 |
+
video_inputs.append(fetch_video(vision_info))
|
357 |
+
else:
|
358 |
+
raise ValueError("image, image_url or video should in content.")
|
359 |
+
if len(image_inputs) == 0:
|
360 |
+
image_inputs = None
|
361 |
+
if len(video_inputs) == 0:
|
362 |
+
video_inputs = None
|
363 |
+
return image_inputs, video_inputs
|
wan/utils/utils.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import argparse
|
3 |
+
import binascii
|
4 |
+
import os
|
5 |
+
import os.path as osp
|
6 |
+
|
7 |
+
import imageio
|
8 |
+
import torch
|
9 |
+
import torchvision
|
10 |
+
|
11 |
+
__all__ = ['cache_video', 'cache_image', 'str2bool']
|
12 |
+
|
13 |
+
|
14 |
+
def rand_name(length=8, suffix=''):
|
15 |
+
name = binascii.b2a_hex(os.urandom(length)).decode('utf-8')
|
16 |
+
if suffix:
|
17 |
+
if not suffix.startswith('.'):
|
18 |
+
suffix = '.' + suffix
|
19 |
+
name += suffix
|
20 |
+
return name
|
21 |
+
|
22 |
+
|
23 |
+
def cache_video(tensor,
|
24 |
+
save_file=None,
|
25 |
+
fps=30,
|
26 |
+
suffix='.mp4',
|
27 |
+
nrow=8,
|
28 |
+
normalize=True,
|
29 |
+
value_range=(-1, 1),
|
30 |
+
retry=5):
|
31 |
+
# cache file
|
32 |
+
cache_file = osp.join('/tmp', rand_name(
|
33 |
+
suffix=suffix)) if save_file is None else save_file
|
34 |
+
|
35 |
+
# save to cache
|
36 |
+
error = None
|
37 |
+
for _ in range(retry):
|
38 |
+
try:
|
39 |
+
# preprocess
|
40 |
+
tensor = tensor.clamp(min(value_range), max(value_range))
|
41 |
+
tensor = torch.stack([
|
42 |
+
torchvision.utils.make_grid(
|
43 |
+
u, nrow=nrow, normalize=normalize, value_range=value_range)
|
44 |
+
for u in tensor.unbind(2)
|
45 |
+
],
|
46 |
+
dim=1).permute(1, 2, 3, 0)
|
47 |
+
tensor = (tensor * 255).type(torch.uint8).cpu()
|
48 |
+
|
49 |
+
# write video
|
50 |
+
writer = imageio.get_writer(
|
51 |
+
cache_file, fps=fps, codec='libx264', quality=8)
|
52 |
+
for frame in tensor.numpy():
|
53 |
+
writer.append_data(frame)
|
54 |
+
writer.close()
|
55 |
+
return cache_file
|
56 |
+
except Exception as e:
|
57 |
+
error = e
|
58 |
+
continue
|
59 |
+
else:
|
60 |
+
print(f'cache_video failed, error: {error}', flush=True)
|
61 |
+
return None
|
62 |
+
|
63 |
+
|
64 |
+
def cache_image(tensor,
|
65 |
+
save_file,
|
66 |
+
nrow=8,
|
67 |
+
normalize=True,
|
68 |
+
value_range=(-1, 1),
|
69 |
+
retry=5):
|
70 |
+
# cache file
|
71 |
+
suffix = osp.splitext(save_file)[1]
|
72 |
+
if suffix.lower() not in [
|
73 |
+
'.jpg', '.jpeg', '.png', '.tiff', '.gif', '.webp'
|
74 |
+
]:
|
75 |
+
suffix = '.png'
|
76 |
+
|
77 |
+
# save to cache
|
78 |
+
error = None
|
79 |
+
for _ in range(retry):
|
80 |
+
try:
|
81 |
+
tensor = tensor.clamp(min(value_range), max(value_range))
|
82 |
+
torchvision.utils.save_image(
|
83 |
+
tensor,
|
84 |
+
save_file,
|
85 |
+
nrow=nrow,
|
86 |
+
normalize=normalize,
|
87 |
+
value_range=value_range)
|
88 |
+
return save_file
|
89 |
+
except Exception as e:
|
90 |
+
error = e
|
91 |
+
continue
|
92 |
+
|
93 |
+
|
94 |
+
def str2bool(v):
|
95 |
+
"""
|
96 |
+
Convert a string to a boolean.
|
97 |
+
|
98 |
+
Supported true values: 'yes', 'true', 't', 'y', '1'
|
99 |
+
Supported false values: 'no', 'false', 'f', 'n', '0'
|
100 |
+
|
101 |
+
Args:
|
102 |
+
v (str): String to convert.
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
bool: Converted boolean value.
|
106 |
+
|
107 |
+
Raises:
|
108 |
+
argparse.ArgumentTypeError: If the value cannot be converted to boolean.
|
109 |
+
"""
|
110 |
+
if isinstance(v, bool):
|
111 |
+
return v
|
112 |
+
v_lower = v.lower()
|
113 |
+
if v_lower in ('yes', 'true', 't', 'y', '1'):
|
114 |
+
return True
|
115 |
+
elif v_lower in ('no', 'false', 'f', 'n', '0'):
|
116 |
+
return False
|
117 |
+
else:
|
118 |
+
raise argparse.ArgumentTypeError('Boolean value expected (True/False)')
|