VotoMatcher / app.py
Thiloid's picture
Update app.py
811d734 verified
import streamlit as st
import json
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
footer="""<style>
a:link , a:visited{
color: blue;
background-color: transparent;
text-decoration: underline;
}
a:hover, a:active {
color: red;
background-color: transparent;
text-decoration: underline;
}
.footer {
position: fixed;
left: 0;
bottom: 0;
width: 100%;
background-color: cornflowerblue;
color: black;
text-align: center;
}
</style>
<div class="footer">
<p>This app was developed by <a href="https://www.voto.vote" target="_blank">VOTO</a>.
Developer: <a href="https://linkedin.com/in/thilo-dieing-bba5b2253" target="_blank">Thilo I. Dieing, M.Sc.</a></p>
</div>
"""
st.markdown(footer,unsafe_allow_html=True)
def add_logo():
st.markdown(
"""
<style>
[data-testid="stSidebarNav"]::before {
content: "Uni Mannheim ASR Team Project";
margin-left: 20px;
margin-top: 20px;
font-size: 20px;
position: relative;
top: 100px;
}
</style>
""",
unsafe_allow_html=True,
)
# functions
add_logo()
col1, col2 = st.columns(2)
with col1:
st.image("voto_purple.png", width=300)
with col2:
st.image("tuda_logo.tif", width=300)
# Title of the app
st.title("VOTO party insights")
# Allow the user to upload a file
uploaded_file = st.file_uploader("Upload the JSON file with your VOTO party answers", type=["json"])
# Check if a file is uploaded
if uploaded_file is not None:
try:
# Try to load the uploaded file as JSON
file_content = uploaded_file.read()
json_data = json.loads(file_content)
# If the file is valid JSON, show a success message
# Convert the JSON data to a DataFrame
if isinstance(json_data, list): # Expecting a list of dictionaries for a proper DataFrame
df = pd.DataFrame(json_data)
election=str(df["instance"].iloc[0])
statements = str(df["statement"].nunique())
statement_n = df["statement"].nunique()
try:
parties = str(df["party_name"].nunique())
except KeyError:
parties = str(df["party"].nunique())
df["party_name"] = df["party"]
st.success("You have uploaded the party answers for the VOTO instance: "+election+" ("+statements+" statements; "+parties+" Parties)")
expander1 = st.expander("Statement Selection")
pivot_df = df.pivot(index='statement', columns='party_name', values='valuation')
# std
df['std_deviation'] = df.groupby('statement')['valuation'].transform('std')
# how many differnet postions
df['unique_postions'] = df.groupby('statement')['valuation'].transform('nunique')
# how many neutrals
df['n_neutral'] = df.groupby('statement')['valuation'].transform(lambda x: (x == 50).sum())
# standalone party postions
value_counts = df.groupby(['statement', 'valuation']).size().reset_index(name='Count')
unique_values = value_counts[value_counts['Count'] == 1]
single_counts = unique_values.groupby('statement').size().reset_index(name='SingleCount')
df = df.merge(single_counts, on='statement', how='left')
df['SingleCount'] = df['SingleCount'].fillna(0).astype(int)
#std without neutral
df_filtered = df[df['valuation'] != 50]
df_filtered['std_deviation2'] = df_filtered.groupby('statement')['valuation'].transform('std')
df2= df_filtered[["statement",'std_deviation2' ]].drop_duplicates()
df = df.merge(df2, on='statement', how='left', suffixes=('', '_new'))
sorted_single_counts = df[['statement', 'std_deviation']].drop_duplicates()
sorted_single_counts['AdjustedRank1'] = sorted_single_counts['std_deviation'].rank(method='dense', ascending=False).astype(int) - 1
df = df.merge(sorted_single_counts[['statement', 'AdjustedRank1']], on='statement', how='left', suffixes=('', '_new'))
sorted_single_counts = df[['statement', 'unique_postions']].drop_duplicates()
sorted_single_counts['AdjustedRank2'] = sorted_single_counts['unique_postions'].rank(method='dense', ascending=False).astype(int) - 1
df = df.merge(sorted_single_counts[['statement', 'AdjustedRank2']], on='statement', how='left', suffixes=('', '_new'))
sorted_single_counts = df[['statement', 'n_neutral']].drop_duplicates()
sorted_single_counts['AdjustedRank3'] = sorted_single_counts['n_neutral'].rank(method='dense').astype(int) - 1
df = df.merge(sorted_single_counts[['statement', 'AdjustedRank3']], on='statement', how='left', suffixes=('', '_new'))
sorted_single_counts = df[['statement', 'SingleCount']].drop_duplicates()
sorted_single_counts['AdjustedRank4'] = sorted_single_counts['SingleCount'].rank(method='dense', ascending=False).astype(int) - 1
df = df.merge(sorted_single_counts[['statement', 'AdjustedRank4']], on='statement', how='left', suffixes=('', '_new'))
sorted_single_counts = df[['statement', 'std_deviation2']].drop_duplicates()
sorted_single_counts['AdjustedRank5'] = sorted_single_counts['std_deviation2'].rank(method='dense', ascending=False).astype(int) - 1
df = df.merge(sorted_single_counts[['statement', 'AdjustedRank5']], on='statement', how='left', suffixes=('', '_new'))
df["statement_importance"]= (df["AdjustedRank1"]+df["AdjustedRank2"]+df["AdjustedRank3"]+df["AdjustedRank4"]+df["AdjustedRank5"])/5
df_pres= df[['statement',"statement_importance"]].drop_duplicates()
df_sorted1 = df_pres.sort_values(by='statement_importance')
df_sorted1.reset_index(drop=True, inplace=True)
df_sorted = df.sort_values(by='statement_importance')
df_sorted.reset_index(drop=True, inplace=True)
statn = expander1.slider("How many statements do you want in your final VOTO? You currently have **"+statements+ "** statements." , 0, int(statements),0)
if statn !=0:
expander1.write("**Based on that our metric recommends keeping the following " +str(statn) +" statements:**")
lstat=df_sorted1['statement'].tolist()
lstat1=lstat[:statn]
i=0
for l in lstat1:
i=i+1
expander1.markdown("<span style='color: green;'>"+str(i)+": "+l+"</span>", unsafe_allow_html=True)
expander1.write("**While the metric recommends dropping "+str(statement_n-statn) +" statements due to a lack of difference:**")
lstat=df_sorted1['statement'].tolist()
lstat1=lstat[statn:]
i=statn
for l in lstat1:
i=i+1
expander1.markdown("<span style='color: red;'>"+str(i)+": "+l+"</span>", unsafe_allow_html=True)
if expander1.button("Additional information on individual metric scores"):
expander1.dataframe(df_sorted)
expander2 = st.expander("Party Positions")
df = pd.DataFrame(json_data)
try:
parties = str(df["party_name"].nunique())
except KeyError:
parties = str(df["party"].nunique())
df["party_name"] = df["party"]
unique_party_names = df['party_name'].unique()
unique_party_names = [""] + list(unique_party_names) # Add an empty option
selected_party = expander2.selectbox("Select a Party", unique_party_names)
contains_25_or_75 = (25 in df['valuation'].values) or (75 in df['valuation'].values)
if contains_25_or_75:
y_ticks = [0, 25, 50, 75, 100] # Set y-ticks for scale 1 to 5
y_tick_labels = ['Strong Disagreement', 'Disagreement', 'Neutral', 'Agreement', 'Strong Agreement'] # Custom labels
else:
y_ticks = [0, 50, 100] # Set y-ticks for scale 1 to 3
y_tick_labels = ['Disagreement', 'Neutral', 'Agreement']
if selected_party: # Check if a party has been selected
df['short_text'] = df['statement'].apply(lambda x: ' '.join(x.split()[:11]))
filtered_df = df[df['party_name'] == selected_party]
fig, ax = plt.subplots(figsize=(6, 20))
ax.scatter(filtered_df['valuation'], filtered_df['short_text'], color='purple', s=100) # s is the size of points
ax.set_xlabel('Valuation',fontsize=16)
ax.set_ylabel('Statements',fontsize=16)
ax.set_title('Valuation by Statement',fontsize=16)
ax.set_xticks(y_ticks) # Set y-ticks dynamically based on condition
ax.tick_params(axis='y', labelsize=16)
ax.tick_params(axis='x', labelsize=16)
ax.set_xticklabels(y_tick_labels)
plt.xticks(rotation=45)
ax.grid(True)
expander2.pyplot(fig)
expander3 = st.expander("Unique Party Positions")
df = pd.DataFrame(json_data)
try:
parties = str(df["party_name"].nunique())
except KeyError:
parties = str(df["party"].nunique())
df["party_name"] = df["party"]
unique_party_names = df['party_name'].unique()
unique_party_names = [""] + list(unique_party_names) # Add an empty option
selected_party = expander3.selectbox("Select a Party", unique_party_names, key="2")
contains_25_or_75 = (25 in df['valuation'].values) or (75 in df['valuation'].values)
if contains_25_or_75:
y_ticks = [0, 25, 50, 75, 100] # Set y-ticks for scale 1 to 5
y_tick_labels = ['Strong Disagreement', 'Disagreement', 'Neutral', 'Agreement', 'Strong Agreement'] # Custom labels
else:
y_ticks = [0, 50, 100] # Set y-ticks for scale 1 to 3
y_tick_labels = ['Disagreement', 'Neutral', 'Agreement']
if selected_party: # Check if a party has been selected
value_counts = df.groupby(['statement', 'valuation']).size().reset_index(name='Count')
unique_values = value_counts[value_counts['Count'] == 1]
unique_parties = df.merge(unique_values[['statement', 'valuation']], on=['statement', 'valuation'])
unique_parties_result = unique_parties[['statement', 'party_name', 'valuation']]
unique_parties_result['short_text'] = unique_parties_result['statement'].apply(lambda x: ' '.join(x.split()[:11]))
filtered_unique_parties_result = unique_parties_result[unique_parties_result['party_name'] == selected_party]
fig, ax = plt.subplots(figsize=(6, 12))
ax.scatter(filtered_unique_parties_result['valuation'], filtered_unique_parties_result['short_text'], color='purple', s=100) # s is the size of points
ax.set_xlabel('Valuation',fontsize=16)
ax.set_ylabel('Statements',fontsize=16)
ax.set_title('Valuation by Statement',fontsize=16)
ax.set_xticks(y_ticks) # Set y-ticks dynamically based on condition
ax.tick_params(axis='y', labelsize=16)
ax.tick_params(axis='x', labelsize=16)
ax.set_xticklabels(y_tick_labels)
plt.xticks(rotation=45)
ax.grid(True)
expander3.pyplot(fig)
else:
st.warning("The JSON file structure is not suitable for DataFrame conversion. It should be a list of dictionaries.")
except json.JSONDecodeError:
# If the file is not a valid JSON, show an error message
st.error("This is not a valid JSON file. Please upload a valid JSON.")
else:
st.info("Please upload a JSON file to get started.")