Spaces:
Sleeping
Sleeping
import streamlit as st | |
import json | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
footer="""<style> | |
a:link , a:visited{ | |
color: blue; | |
background-color: transparent; | |
text-decoration: underline; | |
} | |
a:hover, a:active { | |
color: red; | |
background-color: transparent; | |
text-decoration: underline; | |
} | |
.footer { | |
position: fixed; | |
left: 0; | |
bottom: 0; | |
width: 100%; | |
background-color: cornflowerblue; | |
color: black; | |
text-align: center; | |
} | |
</style> | |
<div class="footer"> | |
<p>This app was developed by <a href="https://www.voto.vote" target="_blank">VOTO</a>. | |
Developer: <a href="https://linkedin.com/in/thilo-dieing-bba5b2253" target="_blank">Thilo I. Dieing, M.Sc.</a></p> | |
</div> | |
""" | |
st.markdown(footer,unsafe_allow_html=True) | |
def add_logo(): | |
st.markdown( | |
""" | |
<style> | |
[data-testid="stSidebarNav"]::before { | |
content: "Uni Mannheim ASR Team Project"; | |
margin-left: 20px; | |
margin-top: 20px; | |
font-size: 20px; | |
position: relative; | |
top: 100px; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True, | |
) | |
# functions | |
add_logo() | |
col1, col2 = st.columns(2) | |
with col1: | |
st.image("voto_purple.png", width=300) | |
with col2: | |
st.image("tuda_logo.tif", width=300) | |
# Title of the app | |
st.title("VOTO party insights") | |
# Allow the user to upload a file | |
uploaded_file = st.file_uploader("Upload the JSON file with your VOTO party answers", type=["json"]) | |
# Check if a file is uploaded | |
if uploaded_file is not None: | |
try: | |
# Try to load the uploaded file as JSON | |
file_content = uploaded_file.read() | |
json_data = json.loads(file_content) | |
# If the file is valid JSON, show a success message | |
# Convert the JSON data to a DataFrame | |
if isinstance(json_data, list): # Expecting a list of dictionaries for a proper DataFrame | |
df = pd.DataFrame(json_data) | |
election=str(df["instance"].iloc[0]) | |
statements = str(df["statement"].nunique()) | |
statement_n = df["statement"].nunique() | |
try: | |
parties = str(df["party_name"].nunique()) | |
except KeyError: | |
parties = str(df["party"].nunique()) | |
df["party_name"] = df["party"] | |
st.success("You have uploaded the party answers for the VOTO instance: "+election+" ("+statements+" statements; "+parties+" Parties)") | |
expander1 = st.expander("Statement Selection") | |
pivot_df = df.pivot(index='statement', columns='party_name', values='valuation') | |
# std | |
df['std_deviation'] = df.groupby('statement')['valuation'].transform('std') | |
# how many differnet postions | |
df['unique_postions'] = df.groupby('statement')['valuation'].transform('nunique') | |
# how many neutrals | |
df['n_neutral'] = df.groupby('statement')['valuation'].transform(lambda x: (x == 50).sum()) | |
# standalone party postions | |
value_counts = df.groupby(['statement', 'valuation']).size().reset_index(name='Count') | |
unique_values = value_counts[value_counts['Count'] == 1] | |
single_counts = unique_values.groupby('statement').size().reset_index(name='SingleCount') | |
df = df.merge(single_counts, on='statement', how='left') | |
df['SingleCount'] = df['SingleCount'].fillna(0).astype(int) | |
#std without neutral | |
df_filtered = df[df['valuation'] != 50] | |
df_filtered['std_deviation2'] = df_filtered.groupby('statement')['valuation'].transform('std') | |
df2= df_filtered[["statement",'std_deviation2' ]].drop_duplicates() | |
df = df.merge(df2, on='statement', how='left', suffixes=('', '_new')) | |
sorted_single_counts = df[['statement', 'std_deviation']].drop_duplicates() | |
sorted_single_counts['AdjustedRank1'] = sorted_single_counts['std_deviation'].rank(method='dense', ascending=False).astype(int) - 1 | |
df = df.merge(sorted_single_counts[['statement', 'AdjustedRank1']], on='statement', how='left', suffixes=('', '_new')) | |
sorted_single_counts = df[['statement', 'unique_postions']].drop_duplicates() | |
sorted_single_counts['AdjustedRank2'] = sorted_single_counts['unique_postions'].rank(method='dense', ascending=False).astype(int) - 1 | |
df = df.merge(sorted_single_counts[['statement', 'AdjustedRank2']], on='statement', how='left', suffixes=('', '_new')) | |
sorted_single_counts = df[['statement', 'n_neutral']].drop_duplicates() | |
sorted_single_counts['AdjustedRank3'] = sorted_single_counts['n_neutral'].rank(method='dense').astype(int) - 1 | |
df = df.merge(sorted_single_counts[['statement', 'AdjustedRank3']], on='statement', how='left', suffixes=('', '_new')) | |
sorted_single_counts = df[['statement', 'SingleCount']].drop_duplicates() | |
sorted_single_counts['AdjustedRank4'] = sorted_single_counts['SingleCount'].rank(method='dense', ascending=False).astype(int) - 1 | |
df = df.merge(sorted_single_counts[['statement', 'AdjustedRank4']], on='statement', how='left', suffixes=('', '_new')) | |
sorted_single_counts = df[['statement', 'std_deviation2']].drop_duplicates() | |
sorted_single_counts['AdjustedRank5'] = sorted_single_counts['std_deviation2'].rank(method='dense', ascending=False).astype(int) - 1 | |
df = df.merge(sorted_single_counts[['statement', 'AdjustedRank5']], on='statement', how='left', suffixes=('', '_new')) | |
df["statement_importance"]= (df["AdjustedRank1"]+df["AdjustedRank2"]+df["AdjustedRank3"]+df["AdjustedRank4"]+df["AdjustedRank5"])/5 | |
df_pres= df[['statement',"statement_importance"]].drop_duplicates() | |
df_sorted1 = df_pres.sort_values(by='statement_importance') | |
df_sorted1.reset_index(drop=True, inplace=True) | |
df_sorted = df.sort_values(by='statement_importance') | |
df_sorted.reset_index(drop=True, inplace=True) | |
statn = expander1.slider("How many statements do you want in your final VOTO? You currently have **"+statements+ "** statements." , 0, int(statements),0) | |
if statn !=0: | |
expander1.write("**Based on that our metric recommends keeping the following " +str(statn) +" statements:**") | |
lstat=df_sorted1['statement'].tolist() | |
lstat1=lstat[:statn] | |
i=0 | |
for l in lstat1: | |
i=i+1 | |
expander1.markdown("<span style='color: green;'>"+str(i)+": "+l+"</span>", unsafe_allow_html=True) | |
expander1.write("**While the metric recommends dropping "+str(statement_n-statn) +" statements due to a lack of difference:**") | |
lstat=df_sorted1['statement'].tolist() | |
lstat1=lstat[statn:] | |
i=statn | |
for l in lstat1: | |
i=i+1 | |
expander1.markdown("<span style='color: red;'>"+str(i)+": "+l+"</span>", unsafe_allow_html=True) | |
if expander1.button("Additional information on individual metric scores"): | |
expander1.dataframe(df_sorted) | |
expander2 = st.expander("Party Positions") | |
df = pd.DataFrame(json_data) | |
try: | |
parties = str(df["party_name"].nunique()) | |
except KeyError: | |
parties = str(df["party"].nunique()) | |
df["party_name"] = df["party"] | |
unique_party_names = df['party_name'].unique() | |
unique_party_names = [""] + list(unique_party_names) # Add an empty option | |
selected_party = expander2.selectbox("Select a Party", unique_party_names) | |
contains_25_or_75 = (25 in df['valuation'].values) or (75 in df['valuation'].values) | |
if contains_25_or_75: | |
y_ticks = [0, 25, 50, 75, 100] # Set y-ticks for scale 1 to 5 | |
y_tick_labels = ['Strong Disagreement', 'Disagreement', 'Neutral', 'Agreement', 'Strong Agreement'] # Custom labels | |
else: | |
y_ticks = [0, 50, 100] # Set y-ticks for scale 1 to 3 | |
y_tick_labels = ['Disagreement', 'Neutral', 'Agreement'] | |
if selected_party: # Check if a party has been selected | |
df['short_text'] = df['statement'].apply(lambda x: ' '.join(x.split()[:11])) | |
filtered_df = df[df['party_name'] == selected_party] | |
fig, ax = plt.subplots(figsize=(6, 20)) | |
ax.scatter(filtered_df['valuation'], filtered_df['short_text'], color='purple', s=100) # s is the size of points | |
ax.set_xlabel('Valuation',fontsize=16) | |
ax.set_ylabel('Statements',fontsize=16) | |
ax.set_title('Valuation by Statement',fontsize=16) | |
ax.set_xticks(y_ticks) # Set y-ticks dynamically based on condition | |
ax.tick_params(axis='y', labelsize=16) | |
ax.tick_params(axis='x', labelsize=16) | |
ax.set_xticklabels(y_tick_labels) | |
plt.xticks(rotation=45) | |
ax.grid(True) | |
expander2.pyplot(fig) | |
expander3 = st.expander("Unique Party Positions") | |
df = pd.DataFrame(json_data) | |
try: | |
parties = str(df["party_name"].nunique()) | |
except KeyError: | |
parties = str(df["party"].nunique()) | |
df["party_name"] = df["party"] | |
unique_party_names = df['party_name'].unique() | |
unique_party_names = [""] + list(unique_party_names) # Add an empty option | |
selected_party = expander3.selectbox("Select a Party", unique_party_names, key="2") | |
contains_25_or_75 = (25 in df['valuation'].values) or (75 in df['valuation'].values) | |
if contains_25_or_75: | |
y_ticks = [0, 25, 50, 75, 100] # Set y-ticks for scale 1 to 5 | |
y_tick_labels = ['Strong Disagreement', 'Disagreement', 'Neutral', 'Agreement', 'Strong Agreement'] # Custom labels | |
else: | |
y_ticks = [0, 50, 100] # Set y-ticks for scale 1 to 3 | |
y_tick_labels = ['Disagreement', 'Neutral', 'Agreement'] | |
if selected_party: # Check if a party has been selected | |
value_counts = df.groupby(['statement', 'valuation']).size().reset_index(name='Count') | |
unique_values = value_counts[value_counts['Count'] == 1] | |
unique_parties = df.merge(unique_values[['statement', 'valuation']], on=['statement', 'valuation']) | |
unique_parties_result = unique_parties[['statement', 'party_name', 'valuation']] | |
unique_parties_result['short_text'] = unique_parties_result['statement'].apply(lambda x: ' '.join(x.split()[:11])) | |
filtered_unique_parties_result = unique_parties_result[unique_parties_result['party_name'] == selected_party] | |
fig, ax = plt.subplots(figsize=(6, 12)) | |
ax.scatter(filtered_unique_parties_result['valuation'], filtered_unique_parties_result['short_text'], color='purple', s=100) # s is the size of points | |
ax.set_xlabel('Valuation',fontsize=16) | |
ax.set_ylabel('Statements',fontsize=16) | |
ax.set_title('Valuation by Statement',fontsize=16) | |
ax.set_xticks(y_ticks) # Set y-ticks dynamically based on condition | |
ax.tick_params(axis='y', labelsize=16) | |
ax.tick_params(axis='x', labelsize=16) | |
ax.set_xticklabels(y_tick_labels) | |
plt.xticks(rotation=45) | |
ax.grid(True) | |
expander3.pyplot(fig) | |
else: | |
st.warning("The JSON file structure is not suitable for DataFrame conversion. It should be a list of dictionaries.") | |
except json.JSONDecodeError: | |
# If the file is not a valid JSON, show an error message | |
st.error("This is not a valid JSON file. Please upload a valid JSON.") | |
else: | |
st.info("Please upload a JSON file to get started.") |