Spaces:
Sleeping
Sleeping
File size: 12,255 Bytes
038fb9b b4ce61d 038fb9b 6459965 038fb9b 811d734 038fb9b b4ce61d d93c7b2 6fe9071 038fb9b 6fe9071 038fb9b 811d734 038fb9b b4ce61d d93c7b2 6fe9071 038fb9b 6fe9071 038fb9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import streamlit as st
import json
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
footer="""<style>
a:link , a:visited{
color: blue;
background-color: transparent;
text-decoration: underline;
}
a:hover, a:active {
color: red;
background-color: transparent;
text-decoration: underline;
}
.footer {
position: fixed;
left: 0;
bottom: 0;
width: 100%;
background-color: cornflowerblue;
color: black;
text-align: center;
}
</style>
<div class="footer">
<p>This app was developed by <a href="https://www.voto.vote" target="_blank">VOTO</a>.
Developer: <a href="https://linkedin.com/in/thilo-dieing-bba5b2253" target="_blank">Thilo I. Dieing, M.Sc.</a></p>
</div>
"""
st.markdown(footer,unsafe_allow_html=True)
def add_logo():
st.markdown(
"""
<style>
[data-testid="stSidebarNav"]::before {
content: "Uni Mannheim ASR Team Project";
margin-left: 20px;
margin-top: 20px;
font-size: 20px;
position: relative;
top: 100px;
}
</style>
""",
unsafe_allow_html=True,
)
# functions
add_logo()
col1, col2 = st.columns(2)
with col1:
st.image("voto_purple.png", width=300)
with col2:
st.image("tuda_logo.tif", width=300)
# Title of the app
st.title("VOTO party insights")
# Allow the user to upload a file
uploaded_file = st.file_uploader("Upload the JSON file with your VOTO party answers", type=["json"])
# Check if a file is uploaded
if uploaded_file is not None:
try:
# Try to load the uploaded file as JSON
file_content = uploaded_file.read()
json_data = json.loads(file_content)
# If the file is valid JSON, show a success message
# Convert the JSON data to a DataFrame
if isinstance(json_data, list): # Expecting a list of dictionaries for a proper DataFrame
df = pd.DataFrame(json_data)
election=str(df["instance"].iloc[0])
statements = str(df["statement"].nunique())
statement_n = df["statement"].nunique()
try:
parties = str(df["party_name"].nunique())
except KeyError:
parties = str(df["party"].nunique())
df["party_name"] = df["party"]
st.success("You have uploaded the party answers for the VOTO instance: "+election+" ("+statements+" statements; "+parties+" Parties)")
expander1 = st.expander("Statement Selection")
pivot_df = df.pivot(index='statement', columns='party_name', values='valuation')
# std
df['std_deviation'] = df.groupby('statement')['valuation'].transform('std')
# how many differnet postions
df['unique_postions'] = df.groupby('statement')['valuation'].transform('nunique')
# how many neutrals
df['n_neutral'] = df.groupby('statement')['valuation'].transform(lambda x: (x == 50).sum())
# standalone party postions
value_counts = df.groupby(['statement', 'valuation']).size().reset_index(name='Count')
unique_values = value_counts[value_counts['Count'] == 1]
single_counts = unique_values.groupby('statement').size().reset_index(name='SingleCount')
df = df.merge(single_counts, on='statement', how='left')
df['SingleCount'] = df['SingleCount'].fillna(0).astype(int)
#std without neutral
df_filtered = df[df['valuation'] != 50]
df_filtered['std_deviation2'] = df_filtered.groupby('statement')['valuation'].transform('std')
df2= df_filtered[["statement",'std_deviation2' ]].drop_duplicates()
df = df.merge(df2, on='statement', how='left', suffixes=('', '_new'))
sorted_single_counts = df[['statement', 'std_deviation']].drop_duplicates()
sorted_single_counts['AdjustedRank1'] = sorted_single_counts['std_deviation'].rank(method='dense', ascending=False).astype(int) - 1
df = df.merge(sorted_single_counts[['statement', 'AdjustedRank1']], on='statement', how='left', suffixes=('', '_new'))
sorted_single_counts = df[['statement', 'unique_postions']].drop_duplicates()
sorted_single_counts['AdjustedRank2'] = sorted_single_counts['unique_postions'].rank(method='dense', ascending=False).astype(int) - 1
df = df.merge(sorted_single_counts[['statement', 'AdjustedRank2']], on='statement', how='left', suffixes=('', '_new'))
sorted_single_counts = df[['statement', 'n_neutral']].drop_duplicates()
sorted_single_counts['AdjustedRank3'] = sorted_single_counts['n_neutral'].rank(method='dense').astype(int) - 1
df = df.merge(sorted_single_counts[['statement', 'AdjustedRank3']], on='statement', how='left', suffixes=('', '_new'))
sorted_single_counts = df[['statement', 'SingleCount']].drop_duplicates()
sorted_single_counts['AdjustedRank4'] = sorted_single_counts['SingleCount'].rank(method='dense', ascending=False).astype(int) - 1
df = df.merge(sorted_single_counts[['statement', 'AdjustedRank4']], on='statement', how='left', suffixes=('', '_new'))
sorted_single_counts = df[['statement', 'std_deviation2']].drop_duplicates()
sorted_single_counts['AdjustedRank5'] = sorted_single_counts['std_deviation2'].rank(method='dense', ascending=False).astype(int) - 1
df = df.merge(sorted_single_counts[['statement', 'AdjustedRank5']], on='statement', how='left', suffixes=('', '_new'))
df["statement_importance"]= (df["AdjustedRank1"]+df["AdjustedRank2"]+df["AdjustedRank3"]+df["AdjustedRank4"]+df["AdjustedRank5"])/5
df_pres= df[['statement',"statement_importance"]].drop_duplicates()
df_sorted1 = df_pres.sort_values(by='statement_importance')
df_sorted1.reset_index(drop=True, inplace=True)
df_sorted = df.sort_values(by='statement_importance')
df_sorted.reset_index(drop=True, inplace=True)
statn = expander1.slider("How many statements do you want in your final VOTO? You currently have **"+statements+ "** statements." , 0, int(statements),0)
if statn !=0:
expander1.write("**Based on that our metric recommends keeping the following " +str(statn) +" statements:**")
lstat=df_sorted1['statement'].tolist()
lstat1=lstat[:statn]
i=0
for l in lstat1:
i=i+1
expander1.markdown("<span style='color: green;'>"+str(i)+": "+l+"</span>", unsafe_allow_html=True)
expander1.write("**While the metric recommends dropping "+str(statement_n-statn) +" statements due to a lack of difference:**")
lstat=df_sorted1['statement'].tolist()
lstat1=lstat[statn:]
i=statn
for l in lstat1:
i=i+1
expander1.markdown("<span style='color: red;'>"+str(i)+": "+l+"</span>", unsafe_allow_html=True)
if expander1.button("Additional information on individual metric scores"):
expander1.dataframe(df_sorted)
expander2 = st.expander("Party Positions")
df = pd.DataFrame(json_data)
try:
parties = str(df["party_name"].nunique())
except KeyError:
parties = str(df["party"].nunique())
df["party_name"] = df["party"]
unique_party_names = df['party_name'].unique()
unique_party_names = [""] + list(unique_party_names) # Add an empty option
selected_party = expander2.selectbox("Select a Party", unique_party_names)
contains_25_or_75 = (25 in df['valuation'].values) or (75 in df['valuation'].values)
if contains_25_or_75:
y_ticks = [0, 25, 50, 75, 100] # Set y-ticks for scale 1 to 5
y_tick_labels = ['Strong Disagreement', 'Disagreement', 'Neutral', 'Agreement', 'Strong Agreement'] # Custom labels
else:
y_ticks = [0, 50, 100] # Set y-ticks for scale 1 to 3
y_tick_labels = ['Disagreement', 'Neutral', 'Agreement']
if selected_party: # Check if a party has been selected
df['short_text'] = df['statement'].apply(lambda x: ' '.join(x.split()[:11]))
filtered_df = df[df['party_name'] == selected_party]
fig, ax = plt.subplots(figsize=(6, 20))
ax.scatter(filtered_df['valuation'], filtered_df['short_text'], color='purple', s=100) # s is the size of points
ax.set_xlabel('Valuation',fontsize=16)
ax.set_ylabel('Statements',fontsize=16)
ax.set_title('Valuation by Statement',fontsize=16)
ax.set_xticks(y_ticks) # Set y-ticks dynamically based on condition
ax.tick_params(axis='y', labelsize=16)
ax.tick_params(axis='x', labelsize=16)
ax.set_xticklabels(y_tick_labels)
plt.xticks(rotation=45)
ax.grid(True)
expander2.pyplot(fig)
expander3 = st.expander("Unique Party Positions")
df = pd.DataFrame(json_data)
try:
parties = str(df["party_name"].nunique())
except KeyError:
parties = str(df["party"].nunique())
df["party_name"] = df["party"]
unique_party_names = df['party_name'].unique()
unique_party_names = [""] + list(unique_party_names) # Add an empty option
selected_party = expander3.selectbox("Select a Party", unique_party_names, key="2")
contains_25_or_75 = (25 in df['valuation'].values) or (75 in df['valuation'].values)
if contains_25_or_75:
y_ticks = [0, 25, 50, 75, 100] # Set y-ticks for scale 1 to 5
y_tick_labels = ['Strong Disagreement', 'Disagreement', 'Neutral', 'Agreement', 'Strong Agreement'] # Custom labels
else:
y_ticks = [0, 50, 100] # Set y-ticks for scale 1 to 3
y_tick_labels = ['Disagreement', 'Neutral', 'Agreement']
if selected_party: # Check if a party has been selected
value_counts = df.groupby(['statement', 'valuation']).size().reset_index(name='Count')
unique_values = value_counts[value_counts['Count'] == 1]
unique_parties = df.merge(unique_values[['statement', 'valuation']], on=['statement', 'valuation'])
unique_parties_result = unique_parties[['statement', 'party_name', 'valuation']]
unique_parties_result['short_text'] = unique_parties_result['statement'].apply(lambda x: ' '.join(x.split()[:11]))
filtered_unique_parties_result = unique_parties_result[unique_parties_result['party_name'] == selected_party]
fig, ax = plt.subplots(figsize=(6, 12))
ax.scatter(filtered_unique_parties_result['valuation'], filtered_unique_parties_result['short_text'], color='purple', s=100) # s is the size of points
ax.set_xlabel('Valuation',fontsize=16)
ax.set_ylabel('Statements',fontsize=16)
ax.set_title('Valuation by Statement',fontsize=16)
ax.set_xticks(y_ticks) # Set y-ticks dynamically based on condition
ax.tick_params(axis='y', labelsize=16)
ax.tick_params(axis='x', labelsize=16)
ax.set_xticklabels(y_tick_labels)
plt.xticks(rotation=45)
ax.grid(True)
expander3.pyplot(fig)
else:
st.warning("The JSON file structure is not suitable for DataFrame conversion. It should be a list of dictionaries.")
except json.JSONDecodeError:
# If the file is not a valid JSON, show an error message
st.error("This is not a valid JSON file. Please upload a valid JSON.")
else:
st.info("Please upload a JSON file to get started.") |