FraudScore / app.py
TheFrenchDemos's picture
Update app.py
567b5f3
raw
history blame
7.26 kB
# docker build -t reward-simulator .docker run -p 7860:7860 -v $(pwd)/data:/app/data reward-simulator
from PIL import Image
import numpy as np
import io
import faiss
import requests
import torch
from request import get_ft, get_topk
from flickrapi import FlickrAPI
from flask import Flask, request, render_template, jsonify, send_from_directory
app = Flask(__name__)
PRESET_IMAGES = {
1: "static/1.webp",
2: "static/2.webp",
3: "static/3.webp"
}
# Add Flickr configuration
FLICKR_API_KEY = '80ef21a6f7eb0984ea613c316a89ca69'
FLICKR_API_SECRET = '4d0e8ce6734f4b3f'
flickr = FlickrAPI(FLICKR_API_KEY, FLICKR_API_SECRET, format='parsed-json', store_token=False)
def get_photo_id(url):
"""Extract photo ID from Flickr URL"""
try:
return url.split('/')[-1].split('_')[0]
except:
return None
def get_other_info(url):
"""Get author information from Flickr"""
try:
photo_id = get_photo_id(url)
if photo_id:
photo_info = flickr.photos.getInfo(photo_id=photo_id)
license = photo_info['photo']['license']
owner = photo_info['photo']['owner']
flickr_url = f"https://www.flickr.com/photos/{owner.get('nsid', '')}/{photo_id}"
return {
'username': owner.get('username', ''),
'realname': owner.get('realname', ''),
'nsid': owner.get('nsid', ''),
'flickr_url': flickr_url,
'license': license
}
except:
pass
return {
'username': 'Unknown',
'realname': 'Unknown',
'nsid': '',
'flickr_url': '',
'license': 'Unknown'
}
def load_model():
"""Load DINOv2 model once and cache it"""
torch.hub.set_dir('static')
model = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14')
model.eval()
model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
return model
def load_index(index_path):
"""Load FAISS index once and cache it"""
return faiss.read_index(index_path)
def distance_to_similarity(distances, temp=1e-4):
"""Convert distance to similarity"""
for ii in range(len(distances)):
contribs = distances[ii].max() - distances[ii]
contribs = contribs / temp
sum_contribs = np.exp(contribs).sum()
distances[ii] = np.exp(contribs) / sum_contribs
return distances
import os
import os
from PIL import Image
import numpy as np
def calculate_rewards(subscription, num_generations, author_share, ro_share, num_users_k, similarities, num_authors=1800):
"""Calculate raw similarity (distance) between two static images"""
try:
if os.path.exists("static/1.webp") and os.path.exists("static/2.webp"):
image1 = Image.open("static/1.webp")
image2 = Image.open("static/2.webp")
features1 = get_ft(model, image1)
features2 = get_ft(model, image1) # temporaire : remettre image2
euclid = float(np.linalg.norm(features1 - features2))
else:
euclid = 0.0
except Exception as e:
print(f"Erreur lors du chargement des images : {e}")
euclid = 0.0
rewards = [{
'raw_similarity': euclid
}]
return rewards
# Global variables for model and index
model = None
index = None
urls = None
def init_model():
global model, index, urls
model = load_model()
index = load_index("data/openimages_index.bin")
with open("data/openimages_urls.txt", "r") as f:
urls = f.readlines()
@app.route('/')
def home():
return render_template('index.html')
@app.route('/static/<path:filename>')
def serve_static(filename):
return send_from_directory('static', filename)
DEFAULT_PARAMS = {
'subscription': 12,
'num_generations': 60,
'author_share': 5,
'ro_share': 10,
'num_users_k': 500,
'num_neighbors': 10,
'num_authors': 2000
}
@app.route('/select_preset/<int:preset_id>')
def select_preset(preset_id):
if preset_id not in PRESET_IMAGES:
return jsonify({'error': 'Invalid preset ID'}), 400
try:
image_path = PRESET_IMAGES[preset_id]
image = Image.open(image_path).convert('RGB')
# Use default parameters for presets
params = DEFAULT_PARAMS.copy()
# Get features and search
features = get_ft(model, image)
distances, indices = get_topk(index, features, topk=params['num_neighbors'])
# Collect valid results first
valid_results = []
valid_similarities = []
for i in range(params['num_neighbors']):
image_url = urls[indices[0][i]].strip()
try:
response = requests.head(image_url)
if response.status_code == 200:
valid_results.append({
'index': i,
'url': image_url
})
valid_similarities.append(distances[0][i])
except requests.RequestException:
continue
# Renormalize similarities for valid results
if valid_similarities:
similarities = distance_to_similarity(np.array([valid_similarities]), temp=1e-5)
# Calculate rewards with renormalized similarities
rewards = calculate_rewards(
params['subscription'],
params['num_generations'],
params['author_share'],
params['ro_share'],
params['num_users_k'],
similarities,
params['num_authors']
)
# Build final results
results = []
for i, result in enumerate(valid_results):
other_info = get_other_info(result['url'])
results.append({
'image_url': result['url'],
'rewards': rewards[i],
'other': other_info
})
return jsonify({'results': results})
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/process', methods=['POST'])
def process_images():
if 'image1' not in request.files or 'image2' not in request.files:
return jsonify({'error': 'Two images must be provided (image1 and image2)'}), 400
try:
# Charger les deux images
image_file1 = request.files['image1']
image1 = Image.open(io.BytesIO(image_file1.read())).convert('RGB')
image_file2 = request.files['image2']
image2 = Image.open(io.BytesIO(image_file2.read())).convert('RGB')
# Extraire les features des deux images
features1 = get_ft(model, image1)
features2 = get_ft(model, image2)
# Calculer la distance euclidienne entre les deux feature vectors
distance = float(np.linalg.norm(features1 - features2)) # Convertir en float Python natif pour JSON
# Retourner la distance
return jsonify({'distance': distance})
except Exception as e:
return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
init_model()
app.run(host='0.0.0.0', port=7860)