Spaces:
Runtime error
Runtime error
Commit
·
567b5f3
1
Parent(s):
4f5a1cf
Update app.py
Browse filesla version précédente provoque encore un "runtime error"
Remplacement complet de calculate_rewards
app.py
CHANGED
@@ -82,51 +82,33 @@ def distance_to_similarity(distances, temp=1e-4):
|
|
82 |
|
83 |
import os
|
84 |
|
|
|
|
|
|
|
|
|
85 |
def calculate_rewards(subscription, num_generations, author_share, ro_share, num_users_k, similarities, num_authors=1800):
|
86 |
-
"""Calculate
|
87 |
-
###num_users = num_users_k * 1000
|
88 |
|
89 |
try:
|
90 |
if os.path.exists("static/1.webp") and os.path.exists("static/2.webp"):
|
91 |
image1 = Image.open("static/1.webp")
|
92 |
image2 = Image.open("static/2.webp")
|
93 |
features1 = get_ft(model, image1)
|
94 |
-
features2 = get_ft(model, image1)
|
95 |
euclid = float(np.linalg.norm(features1 - features2))
|
96 |
else:
|
97 |
-
euclid = 0
|
98 |
except Exception as e:
|
99 |
print(f"Erreur lors du chargement des images : {e}")
|
100 |
-
euclid = 0
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
rewards = []
|
106 |
-
###for sim in similarities[0]:
|
107 |
-
# Attribution bonus based on similarity score and number of neighbors
|
108 |
-
###attribution_bonus = sim * len(similarities[0])
|
109 |
-
|
110 |
-
# Calculate monthly rewards
|
111 |
-
###author_month_reward = (authors_monthly_revenue / num_authors) * attribution_bonus
|
112 |
-
###ro_month_reward = author_month_reward / (author_share / 100) * (ro_share / 100)
|
113 |
-
|
114 |
-
###try:
|
115 |
-
### sim_value = float(sim.item()) if hasattr(sim, "item") else float(sim)
|
116 |
-
###except Exception as e:
|
117 |
-
### print("Erreur de conversion de sim:", e)
|
118 |
-
### sim_value = 0.0 # valeur par défaut en cas d'erreur
|
119 |
-
|
120 |
-
rewards.append({
|
121 |
-
### 'paid_per_month': f"{subscription:.0f}€",
|
122 |
-
### 'attribution': f"{sim*100:.0f}%",
|
123 |
-
### 'author_month_reward': f"{author_month_reward:.0f}€",
|
124 |
-
### 'ro_month_reward': f"{ro_month_reward:.0f}€",
|
125 |
-
'raw_similarity': euclid
|
126 |
-
})
|
127 |
return rewards
|
128 |
|
129 |
|
|
|
130 |
# Global variables for model and index
|
131 |
model = None
|
132 |
index = None
|
|
|
82 |
|
83 |
import os
|
84 |
|
85 |
+
import os
|
86 |
+
from PIL import Image
|
87 |
+
import numpy as np
|
88 |
+
|
89 |
def calculate_rewards(subscription, num_generations, author_share, ro_share, num_users_k, similarities, num_authors=1800):
|
90 |
+
"""Calculate raw similarity (distance) between two static images"""
|
|
|
91 |
|
92 |
try:
|
93 |
if os.path.exists("static/1.webp") and os.path.exists("static/2.webp"):
|
94 |
image1 = Image.open("static/1.webp")
|
95 |
image2 = Image.open("static/2.webp")
|
96 |
features1 = get_ft(model, image1)
|
97 |
+
features2 = get_ft(model, image1) # temporaire : remettre image2
|
98 |
euclid = float(np.linalg.norm(features1 - features2))
|
99 |
else:
|
100 |
+
euclid = 0.0
|
101 |
except Exception as e:
|
102 |
print(f"Erreur lors du chargement des images : {e}")
|
103 |
+
euclid = 0.0
|
104 |
|
105 |
+
rewards = [{
|
106 |
+
'raw_similarity': euclid
|
107 |
+
}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
return rewards
|
109 |
|
110 |
|
111 |
+
|
112 |
# Global variables for model and index
|
113 |
model = None
|
114 |
index = None
|