Spaces:
Runtime error
Runtime error
File size: 5,995 Bytes
aa84e52 a31db9e aa84e52 a31db9e aa84e52 a31db9e aa84e52 a31db9e aa84e52 a31db9e aa84e52 a31db9e aa84e52 a31db9e aa84e52 a31db9e aa84e52 a31db9e aa84e52 a31db9e aa84e52 a31db9e aa84e52 a31db9e aa84e52 a31db9e aa84e52 a31db9e aa84e52 a31db9e aa84e52 a31db9e aa84e52 de2970a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import gradio as gr
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Model configuration
model_name = "ai4bharat/IndicBART"
# Load tokenizer and model on CPU
print("Loading IndicBART tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_name, do_lower_case=False, use_fast=False, keep_accents=True)
print("Loading IndicBART model on CPU...")
model = AutoModelForSeq2SeqLM.from_pretrained(
model_name,
torch_dtype=torch.float32, # Use float32 for better CPU performance
device_map="cpu"
)
# Language mapping
LANGUAGE_CODES = {
"Assamese": "<2as>",
"Bengali": "<2bn>",
"English": "<2en>",
"Gujarati": "<2gu>",
"Hindi": "<2hi>",
"Kannada": "<2kn>",
"Malayalam": "<2ml>",
"Marathi": "<2mr>",
"Oriya": "<2or>",
"Punjabi": "<2pa>",
"Tamil": "<2ta>",
"Telugu": "<2te>"
}
def generate_response(input_text, source_lang, target_lang, task_type, max_length):
"""Generate response using IndicBART on CPU"""
# Get language codes
src_code = LANGUAGE_CODES[source_lang]
tgt_code = LANGUAGE_CODES[target_lang]
# Format input based on task type
if task_type == "Translation":
formatted_input = f"{input_text} </s> {src_code}"
decoder_start_token = tgt_code
elif task_type == "Text Completion":
# For completion, use target language
formatted_input = f"{input_text} </s> {tgt_code}"
decoder_start_token = tgt_code
else: # Text Generation
formatted_input = f"{input_text} </s> {src_code}"
decoder_start_token = tgt_code
# Tokenize input (keep on CPU)
inputs = tokenizer(formatted_input, return_tensors="pt", padding=True, truncation=True, max_length=512)
# Get decoder start token id
try:
decoder_start_token_id = tokenizer._convert_token_to_id_with_added_voc(decoder_start_token)
except:
# Fallback if the method doesn't exist
decoder_start_token_id = tokenizer.convert_tokens_to_ids(decoder_start_token)
# Generate on CPU
with torch.no_grad():
outputs = model.generate(
**inputs,
decoder_start_token_id=decoder_start_token_id,
max_length=max_length,
num_beams=2, # Reduced for faster CPU inference
early_stopping=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
use_cache=True,
do_sample=False # Deterministic for CPU
)
# Decode output
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
return generated_text
# Create Gradio interface
with gr.Blocks(title="IndicBART CPU Multilingual Assistant", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# ๐ฎ๐ณ IndicBART Multilingual Assistant (CPU Version)
Experience IndicBART - trained on **11 Indian languages**! Perfect for translation, text completion, and multilingual generation.
**Supported Languages**: Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, Telugu, English
*Note: Running on CPU - responses may take longer than GPU version.*
""")
with gr.Row():
with gr.Column(scale=3):
input_text = gr.Textbox(
label="Input Text",
placeholder="Enter text in any supported language...",
lines=3
)
output_text = gr.Textbox(
label="Generated Output",
lines=5,
interactive=False
)
with gr.Row():
generate_btn = gr.Button("Generate", variant="primary", size="lg")
clear_btn = gr.Button("Clear", variant="secondary")
with gr.Column(scale=1):
task_type = gr.Dropdown(
choices=["Translation", "Text Completion", "Text Generation"],
value="Translation",
label="Task Type"
)
source_lang = gr.Dropdown(
choices=list(LANGUAGE_CODES.keys()),
value="English",
label="Source Language"
)
target_lang = gr.Dropdown(
choices=list(LANGUAGE_CODES.keys()),
value="Hindi",
label="Target Language"
)
max_length = gr.Slider(
minimum=20,
maximum=200, # Reduced for faster CPU processing
value=80,
step=10,
label="Max Length"
)
# Examples
gr.Markdown("### ๐ก Try these examples:")
examples = [
["Hello, how are you?", "English", "Hindi", "Translation", 80],
["เคฎเฅเค เคเค เคเคพเคคเฅเคฐ เคนเฅเค", "Hindi", "English", "Translation", 80],
["เฆเฆฎเฆฟ เฆญเฆพเฆค เฆเฆพเฆ", "Bengali", "English", "Translation", 80],
["เคญเคพเคฐเคค เคเค", "Hindi", "Hindi", "Text Completion", 100],
["The capital of India", "English", "English", "Text Completion", 80]
]
gr.Examples(
examples=examples,
inputs=[input_text, source_lang, target_lang, task_type, max_length],
outputs=output_text,
fn=generate_response
)
# Event handlers
def clear_fields():
return "", ""
# Connect buttons
generate_btn.click(
generate_response,
inputs=[input_text, source_lang, target_lang, task_type, max_length],
outputs=output_text
)
clear_btn.click(
clear_fields,
outputs=[input_text, output_text]
)
if __name__ == "__main__":
demo.launch(
share=True,
ssr_mode=False, # Disable SSR mode to fix the 500 error
server_name="0.0.0.0",
server_port=7860,
show_error=True
)
|