File size: 5,995 Bytes
aa84e52
 
 
 
 
 
 
 
 
 
 
 
a31db9e
 
 
 
 
aa84e52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a31db9e
aa84e52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a31db9e
aa84e52
 
 
a31db9e
 
 
 
 
aa84e52
a31db9e
aa84e52
a31db9e
aa84e52
 
 
a31db9e
aa84e52
 
 
a31db9e
 
aa84e52
 
 
 
 
 
 
 
a31db9e
aa84e52
a31db9e
aa84e52
 
 
 
a31db9e
 
aa84e52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a31db9e
 
 
aa84e52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a31db9e
 
 
aa84e52
 
 
 
 
 
 
 
a31db9e
 
 
 
 
aa84e52
 
 
 
 
 
 
 
 
a31db9e
 
 
 
 
aa84e52
 
 
 
 
a31db9e
 
 
 
 
aa84e52
de2970a
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import gradio as gr
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

# Model configuration
model_name = "ai4bharat/IndicBART"

# Load tokenizer and model on CPU
print("Loading IndicBART tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_name, do_lower_case=False, use_fast=False, keep_accents=True)

print("Loading IndicBART model on CPU...")
model = AutoModelForSeq2SeqLM.from_pretrained(
    model_name, 
    torch_dtype=torch.float32,  # Use float32 for better CPU performance
    device_map="cpu"
)

# Language mapping
LANGUAGE_CODES = {
    "Assamese": "<2as>",
    "Bengali": "<2bn>", 
    "English": "<2en>",
    "Gujarati": "<2gu>",
    "Hindi": "<2hi>",
    "Kannada": "<2kn>",
    "Malayalam": "<2ml>",
    "Marathi": "<2mr>",
    "Oriya": "<2or>",
    "Punjabi": "<2pa>",
    "Tamil": "<2ta>",
    "Telugu": "<2te>"
}

def generate_response(input_text, source_lang, target_lang, task_type, max_length):
    """Generate response using IndicBART on CPU"""
    
    # Get language codes
    src_code = LANGUAGE_CODES[source_lang]
    tgt_code = LANGUAGE_CODES[target_lang]
    
    # Format input based on task type
    if task_type == "Translation":
        formatted_input = f"{input_text} </s> {src_code}"
        decoder_start_token = tgt_code
    elif task_type == "Text Completion":
        # For completion, use target language
        formatted_input = f"{input_text} </s> {tgt_code}"
        decoder_start_token = tgt_code
    else:  # Text Generation
        formatted_input = f"{input_text} </s> {src_code}"
        decoder_start_token = tgt_code
    
    # Tokenize input (keep on CPU)
    inputs = tokenizer(formatted_input, return_tensors="pt", padding=True, truncation=True, max_length=512)
    
    # Get decoder start token id
    try:
        decoder_start_token_id = tokenizer._convert_token_to_id_with_added_voc(decoder_start_token)
    except:
        # Fallback if the method doesn't exist
        decoder_start_token_id = tokenizer.convert_tokens_to_ids(decoder_start_token)
    
    # Generate on CPU
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            decoder_start_token_id=decoder_start_token_id,
            max_length=max_length,
            num_beams=2,  # Reduced for faster CPU inference
            early_stopping=True,
            pad_token_id=tokenizer.pad_token_id,
            eos_token_id=tokenizer.eos_token_id,
            use_cache=True,
            do_sample=False  # Deterministic for CPU
        )
    
    # Decode output
    generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
    
    return generated_text

# Create Gradio interface
with gr.Blocks(title="IndicBART CPU Multilingual Assistant", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # ๐Ÿ‡ฎ๐Ÿ‡ณ IndicBART Multilingual Assistant (CPU Version)
    
    Experience IndicBART - trained on **11 Indian languages**! Perfect for translation, text completion, and multilingual generation.
    
    **Supported Languages**: Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, Telugu, English
    
    *Note: Running on CPU - responses may take longer than GPU version.*
    """)
    
    with gr.Row():
        with gr.Column(scale=3):
            input_text = gr.Textbox(
                label="Input Text",
                placeholder="Enter text in any supported language...",
                lines=3
            )
            
            output_text = gr.Textbox(
                label="Generated Output",
                lines=5,
                interactive=False
            )
            
            with gr.Row():
                generate_btn = gr.Button("Generate", variant="primary", size="lg")
                clear_btn = gr.Button("Clear", variant="secondary")
        
        with gr.Column(scale=1):
            task_type = gr.Dropdown(
                choices=["Translation", "Text Completion", "Text Generation"],
                value="Translation",
                label="Task Type"
            )
            
            source_lang = gr.Dropdown(
                choices=list(LANGUAGE_CODES.keys()),
                value="English",
                label="Source Language"
            )
            
            target_lang = gr.Dropdown(
                choices=list(LANGUAGE_CODES.keys()),
                value="Hindi",
                label="Target Language"
            )
            
            max_length = gr.Slider(
                minimum=20,
                maximum=200,  # Reduced for faster CPU processing
                value=80,
                step=10,
                label="Max Length"
            )
    
    # Examples
    gr.Markdown("### ๐Ÿ’ก Try these examples:")
    
    examples = [
        ["Hello, how are you?", "English", "Hindi", "Translation", 80],
        ["เคฎเฅˆเค‚ เคเค• เค›เคพเคคเฅเคฐ เคนเฅ‚เค‚", "Hindi", "English", "Translation", 80],
        ["เฆ†เฆฎเฆฟ เฆญเฆพเฆค เฆ–เฆพเฆ‡", "Bengali", "English", "Translation", 80],
        ["เคญเคพเคฐเคค เคเค•", "Hindi", "Hindi", "Text Completion", 100],
        ["The capital of India", "English", "English", "Text Completion", 80]
    ]
    
    gr.Examples(
        examples=examples,
        inputs=[input_text, source_lang, target_lang, task_type, max_length],
        outputs=output_text,
        fn=generate_response
    )
    
    # Event handlers
    def clear_fields():
        return "", ""
    
    # Connect buttons
    generate_btn.click(
        generate_response,
        inputs=[input_text, source_lang, target_lang, task_type, max_length],
        outputs=output_text
    )
    
    clear_btn.click(
        clear_fields,
        outputs=[input_text, output_text]
    )
if __name__ == "__main__":
    demo.launch(
        share=True,
        ssr_mode=False,  # Disable SSR mode to fix the 500 error
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )