Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from gradio.events import SelectData | |
import spaces | |
from gradio_litmodel3d import LitModel3D | |
import json | |
import os | |
import shutil | |
os.environ['SPCONV_ALGO'] = 'native' | |
from typing import * | |
import torch | |
import numpy as np | |
import imageio | |
from pathlib import Path | |
from easydict import EasyDict as edict | |
from PIL import Image | |
from trellis.pipelines import TrellisImageTo3DPipeline | |
from trellis.representations import Gaussian, MeshExtractResult | |
from trellis.utils import render_utils, postprocessing_utils | |
from collections.abc import Sequence | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
os.makedirs(TMP_DIR, exist_ok=True) | |
def start_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
def end_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
shutil.rmtree(user_dir) | |
def preprocess_image(image: Image.Image) -> Image.Image: | |
""" | |
Preprocess the input image. | |
Args: | |
image (Image.Image): The input image. | |
Returns: | |
Image.Image: The preprocessed image. | |
""" | |
processed_image = pipeline.preprocess_image(image) | |
return processed_image | |
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]: | |
""" | |
Preprocess a list of input images. | |
Args: | |
images (List[Tuple[Image.Image, str]]): The input images. | |
Returns: | |
List[Image.Image]: The preprocessed images. | |
""" | |
images = [image[0] for image in images] | |
processed_images = [pipeline.preprocess_image(image) for image in images] | |
return processed_images | |
def preprocess_upload_images(file_list: List[Any]) -> List[Tuple[Image.Image, str]]: | |
images = [] | |
for f in file_list: | |
if isinstance(f, dict): | |
path = f.get("path") or f.get("name") | |
filename = os.path.basename(path) | |
else: # UploadedFile / FileData | |
path = f.name | |
filename = os.path.basename(path) | |
img = Image.open(path).convert("RGBA").resize( | |
(518, 518), Image.Resampling.LANCZOS | |
) | |
images.append((img, filename)) | |
return images | |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: | |
return { | |
'gaussian': { | |
**gs.init_params, | |
'_xyz': gs._xyz.cpu().numpy(), | |
'_features_dc': gs._features_dc.cpu().numpy(), | |
'_scaling': gs._scaling.cpu().numpy(), | |
'_rotation': gs._rotation.cpu().numpy(), | |
'_opacity': gs._opacity.cpu().numpy(), | |
}, | |
'mesh': { | |
'vertices': mesh.vertices.cpu().numpy(), | |
'faces': mesh.faces.cpu().numpy(), | |
}, | |
} | |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: | |
gs = Gaussian( | |
aabb=state['gaussian']['aabb'], | |
sh_degree=state['gaussian']['sh_degree'], | |
mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
scaling_bias=state['gaussian']['scaling_bias'], | |
opacity_bias=state['gaussian']['opacity_bias'], | |
scaling_activation=state['gaussian']['scaling_activation'], | |
) | |
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
mesh = edict( | |
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
) | |
return gs, mesh | |
def get_seed(randomize_seed: bool, seed: int) -> int: | |
""" | |
Get the random seed. | |
""" | |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed | |
def normalize_multiimages(multiimages: Sequence) -> List[Tuple[Image.Image, str]]: | |
if not multiimages: | |
return [] | |
if isinstance(multiimages[0], Image.Image): | |
return [ | |
(pipeline.preprocess_image(img), f"gallery_{i}.png") | |
for i, img in enumerate(multiimages) | |
] | |
if isinstance(multiimages[0], tuple): | |
return [ | |
(pipeline.preprocess_image(img), name) | |
for img, name in multiimages | |
] | |
return preprocess_upload_images(multiimages) | |
def image_to_3d( | |
image: Image.Image, | |
multiimages: List[Any], | |
is_multiimage: str, | |
seed: int, | |
ss_guidance_strength: float, | |
ss_sampling_steps: int, | |
slat_guidance_strength: float, | |
slat_sampling_steps: int, | |
multiimage_algo: Literal["multidiffusion", "stochastic"], | |
req: gr.Request, | |
) -> Tuple[dict, str]: | |
""" | |
Convert an image (or multiple images) into a 3D model and return its state and video. | |
Args: | |
image (Image.Image): The input image for single-image mode. | |
multiimages (List[Tuple[Image.Image, str]]): List of images with captions for multi-image mode. | |
is_multiimage (str): Whether to use multi-image generation. | |
seed (int): Random seed for reproducibility. | |
ss_guidance_strength (float): Sparse structure guidance strength. | |
ss_sampling_steps (int): Sparse structure sampling steps. | |
slat_guidance_strength (float): SLAT guidance strength. | |
slat_sampling_steps (int): SLAT sampling steps. | |
multiimage_algo (str): Multi-image algorithm to use. | |
Returns: | |
dict: The information of the generated 3D model. | |
str: The path to the video of the 3D model. | |
""" | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
is_multiimage = is_multiimage.lower() == "true" | |
multiimages = normalize_multiimages(multiimages) | |
print("[DEBUG] is_multiimage:", is_multiimage, "num_imgs:", len(multiimages)) | |
if is_multiimage and len(multiimages) == 0: | |
is_multiimage = False | |
# Run pipeline depending on mode | |
if not is_multiimage: | |
outputs = pipeline.run( | |
image, | |
seed=seed, | |
formats=["gaussian", "mesh"], | |
preprocess_image=False, | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
) | |
else: | |
pil_images = [img for img, _ in multiimages] | |
assert all(isinstance(im, Image.Image) for im in pil_images) | |
outputs = pipeline.run_multi_image( | |
pil_images, | |
seed=seed, | |
formats=["gaussian", "mesh"], | |
preprocess_image=False, | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
mode=multiimage_algo, | |
) | |
# Render the 3D video combining color and geometry | |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
# Save the video | |
video_path = os.path.join(user_dir, 'sample.mp4') | |
imageio.mimsave(video_path, video, fps=15) | |
# Pack state for downstream use | |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) | |
torch.cuda.empty_cache() | |
return state, video_path | |
def extract_glb( | |
state: dict, | |
mesh_simplify: float, | |
texture_size: int, | |
req: gr.Request, | |
) -> Tuple[str, str]: | |
""" | |
Extract a GLB file from the 3D model. | |
Args: | |
state (dict): The state of the generated 3D model. | |
mesh_simplify (float): The mesh simplification factor. | |
texture_size (int): The texture resolution. | |
Returns: | |
str: The path to the extracted GLB file. | |
""" | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
gs, mesh = unpack_state(state) | |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
glb_path = os.path.join(user_dir, 'sample.glb') | |
glb.export(glb_path) | |
torch.cuda.empty_cache() | |
return glb_path, glb_path | |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]: | |
""" | |
Extract a Gaussian file from the 3D model. | |
Args: | |
state (dict): The state of the generated 3D model. | |
Returns: | |
str: The path to the extracted Gaussian file. | |
""" | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
gs, _ = unpack_state(state) | |
gaussian_path = os.path.join(user_dir, 'sample.ply') | |
gs.save_ply(gaussian_path) | |
torch.cuda.empty_cache() | |
return gaussian_path, gaussian_path | |
def prepare_multi_example() -> List[Image.Image]: | |
multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")])) | |
images = [] | |
for case in multi_case: | |
_images = [] | |
for i in range(1, 4): | |
img = Image.open(f'assets/example_multi_image/{case}_{i}.png') | |
W, H = img.size | |
img = img.resize((int(W / H * 512), 512)) | |
_images.append(np.array(img)) | |
images.append(Image.fromarray(np.concatenate(_images, axis=1))) | |
return images | |
def split_image(image: Image.Image) -> List[Image.Image]: | |
""" | |
Split an image into multiple views. | |
""" | |
image = np.array(image) | |
alpha = image[..., 3] | |
alpha = np.any(alpha>0, axis=0) | |
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist() | |
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist() | |
images = [] | |
for s, e in zip(start_pos, end_pos): | |
images.append(Image.fromarray(image[:, s:e+1])) | |
return [preprocess_image(image) for image in images] | |
def _example_to_multi(img: Image.Image): | |
imgs = split_image(img) | |
return imgs, imgs | |
def _files_to_gallery_and_state(file_list): | |
tuples = preprocess_upload_images(file_list) | |
gallery_imgs = [img for img, _ in tuples] | |
return gallery_imgs, tuples | |
def quick_generate_glb( | |
image: Image.Image, | |
multiimages: List[Tuple[Image.Image, str]], | |
is_multiimage: str, | |
seed: int, | |
ss_guidance_strength: float, | |
ss_sampling_steps: int, | |
slat_guidance_strength: float, | |
slat_sampling_steps: int, | |
multiimage_algo: Literal["multidiffusion", "stochastic"], | |
mesh_simplify: float, | |
texture_size: int, | |
req: gr.Request, | |
) -> Tuple[str, str]: | |
state, _ = image_to_3d( | |
image=image, | |
multiimages=multiimages, | |
is_multiimage=is_multiimage, | |
seed=seed, | |
ss_guidance_strength=ss_guidance_strength, | |
ss_sampling_steps=ss_sampling_steps, | |
slat_guidance_strength=slat_guidance_strength, | |
slat_sampling_steps=slat_sampling_steps, | |
multiimage_algo=multiimage_algo, | |
req=req | |
) | |
return extract_glb(state, mesh_simplify=mesh_simplify, texture_size=texture_size, req=req) | |
def quick_generate_gs( | |
image: Image.Image, | |
multiimages: List[Tuple[Image.Image, str]], | |
is_multiimage: str, | |
seed: int, | |
ss_guidance_strength: float, | |
ss_sampling_steps: int, | |
slat_guidance_strength: float, | |
slat_sampling_steps: int, | |
multiimage_algo: Literal["multidiffusion", "stochastic"], | |
req: gr.Request, | |
) -> Tuple[str, str]: | |
state, _ = image_to_3d( | |
image=image, | |
multiimages=multiimages, | |
is_multiimage=is_multiimage, | |
seed=seed, | |
ss_guidance_strength=ss_guidance_strength, | |
ss_sampling_steps=ss_sampling_steps, | |
slat_guidance_strength=slat_guidance_strength, | |
slat_sampling_steps=slat_sampling_steps, | |
multiimage_algo=multiimage_algo, | |
req=req | |
) | |
return extract_gaussian(state, req=req) | |
def test_for_api_gen(image: Image.Image) -> Image.Image: | |
""" | |
bilibili . | |
Args: | |
image (Image.Image): The input imagein hererererer. | |
Returns: | |
Image.Image: The preprocessed image no processs. | |
""" | |
return image | |
def update_is_multiimage(event: gr.SelectData): | |
return gr.update("true" if event.index == 1 else "false") | |
def toggle_multiimage_visibility(choice: str): | |
show = choice.lower() == "true" | |
return ( | |
gr.update(visible=show), # uploaded_api_images | |
gr.update(visible=show) # multiimage_prompt (Gallery) | |
) | |
with gr.Blocks(delete_cache=(600, 600)) as demo: | |
gr.Markdown(""" | |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/) | |
Thanks to the incredible work of [JeffreyXiang/TRELLIS-image-large](https://huggingface.co/JeffreyXiang/TRELLIS-image-large) for providing such a stunning implementation of the TRELLIS 3D pipeline. | |
During my usage, I noticed that many users had questions regarding API access. I've spent some time refactoring the `image_to_3d` pipeline and adding two new endpoints: | |
- 🔁 `quick_generate_glb`: Directly generate and download a `.glb` 3D asset. | |
- 🌐 `quick_generate_gs`: Directly generate and download the Gaussian `.ply` file. | |
- 🧩 Both functions are exposed as Hugging Face API endpoints and can be called via `gradio_client` or any HTTP client. | |
### How to Use: | |
- Upload an image and click **"Generate"** to create a 3D asset. If the image has an alpha channel, it will be used as a mask. Otherwise, `rembg` will automatically remove the background. | |
- If you're satisfied with the result, click **"Extract GLB"** or **"Extract Gaussian"** to download the 3D file. | |
### Features: | |
- ✅ Single-image and experimental multi-image generation | |
- ✅ `.glb` extraction with mesh simplification and texturing | |
- ✅ `.ply` (Gaussian) extraction | |
- ✅ Public API endpoints for one-click asset generation and download | |
Feel free to try it out and send feedback — I'm happy to keep improving it based on your suggestions! | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tabs() as input_tabs: | |
with gr.Tab(label="Single Image", id=0) as single_image_input_tab: | |
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300) | |
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab: | |
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3) | |
gr.Markdown(""" | |
Input different views of the object in separate images. | |
*NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.* | |
""") | |
is_multiimage = gr.Textbox(value="false", visible=True, interactive=False, label="is_multiimage") | |
input_tabs.select( | |
fn=update_is_multiimage, | |
outputs=is_multiimage | |
) | |
uploaded_api_images = gr.Files(file_types=["image"], label="Upload Images") | |
multiimage_combined = gr.State() | |
is_multiimage.change( | |
fn=toggle_multiimage_visibility, | |
inputs=is_multiimage, | |
outputs=[uploaded_api_images, multiimage_prompt], | |
trigger_mode="multiple" | |
) | |
with gr.Accordion(label="Generation Settings", open=False): | |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
gr.Markdown("Stage 1: Sparse Structure Generation") | |
with gr.Row(): | |
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
gr.Markdown("Stage 2: Structured Latent Generation") | |
with gr.Row(): | |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) | |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic") | |
generate_btn = gr.Button("Generate") | |
with gr.Accordion(label="GLB Extraction Settings", open=False): | |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
with gr.Row(): | |
extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False) | |
with gr.Row(): | |
quick_generate_glb_btn = gr.Button("Quick Generate GLB") | |
quick_generate_gs_btn = gr.Button("Quick Generate Gaussian") | |
gr.Markdown(""" | |
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.* | |
""") | |
with gr.Column(): | |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) | |
model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300) | |
with gr.Row(): | |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False) | |
output_buf = gr.State() | |
# Example images at the bottom of the page | |
with gr.Row() as single_image_example: | |
examples = gr.Examples( | |
examples=[ | |
f'assets/example_image/{image}' | |
for image in os.listdir("assets/example_image") | |
], | |
inputs=[image_prompt], | |
fn=preprocess_image, | |
outputs=[image_prompt], | |
run_on_click=True, | |
examples_per_page=64, | |
) | |
with gr.Row(visible=False) as multiimage_example: | |
examples_multi = gr.Examples( | |
examples=prepare_multi_example(), | |
inputs=[image_prompt], | |
fn=_example_to_multi, | |
outputs=[multiimage_prompt, | |
multiimage_combined], | |
run_on_click=True, | |
examples_per_page=8, | |
) | |
# Handlers | |
demo.load(start_session) | |
demo.unload(end_session) | |
single_image_input_tab.select( | |
lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]), | |
outputs=[is_multiimage, single_image_example, multiimage_example] | |
) | |
multiimage_input_tab.select( | |
lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]), | |
outputs=[is_multiimage, single_image_example, multiimage_example] | |
) | |
image_prompt.upload( | |
preprocess_image, | |
inputs=[image_prompt], | |
outputs=[image_prompt], | |
) | |
# multiimage_prompt.upload( | |
# preprocess_images, | |
# inputs=[multiimage_prompt], | |
# outputs=[multiimage_prompt], | |
# ) | |
multiimage_prompt.upload( | |
fn=lambda imgs: imgs, | |
inputs=[multiimage_prompt], | |
outputs=[multiimage_prompt, multiimage_combined], | |
) | |
uploaded_api_images.upload( | |
fn=_files_to_gallery_and_state, | |
inputs=[uploaded_api_images], | |
outputs=[multiimage_prompt, multiimage_combined], | |
preprocess=False, | |
) | |
generate_btn.click( | |
get_seed, | |
inputs=[randomize_seed, seed], | |
outputs=[seed], | |
).then( | |
image_to_3d, | |
inputs=[ | |
image_prompt, multiimage_combined, is_multiimage, seed, | |
ss_guidance_strength, ss_sampling_steps, | |
slat_guidance_strength, slat_sampling_steps, multiimage_algo | |
], | |
outputs=[output_buf, video_output], | |
).then( | |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]), | |
outputs=[extract_glb_btn, extract_gs_btn], | |
) | |
video_output.clear( | |
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]), | |
outputs=[extract_glb_btn, extract_gs_btn], | |
) | |
extract_glb_btn.click( | |
extract_glb, | |
inputs=[output_buf, mesh_simplify, texture_size], | |
outputs=[model_output, download_glb], | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[download_glb], | |
) | |
extract_gs_btn.click( | |
extract_gaussian, | |
inputs=[output_buf], | |
outputs=[model_output, download_gs], | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[download_gs], | |
) | |
model_output.clear( | |
lambda: gr.Button(interactive=False), | |
outputs=[download_glb], | |
) | |
quick_generate_glb_btn.click( | |
fn=quick_generate_glb, | |
inputs=[ | |
image_prompt, | |
multiimage_combined, | |
is_multiimage, | |
seed, | |
ss_guidance_strength, | |
ss_sampling_steps, | |
slat_guidance_strength, | |
slat_sampling_steps, | |
multiimage_algo, | |
mesh_simplify, | |
texture_size, | |
], | |
outputs=[model_output, download_glb], | |
) | |
quick_generate_gs_btn.click( | |
fn=quick_generate_gs, | |
inputs=[ | |
image_prompt, | |
multiimage_combined, | |
is_multiimage, | |
seed, | |
ss_guidance_strength, | |
ss_sampling_steps, | |
slat_guidance_strength, | |
slat_sampling_steps, | |
multiimage_algo, | |
], | |
outputs=[model_output, download_gs], | |
) | |
generate_btn.click( | |
fn=image_to_3d, | |
inputs=[ | |
image_prompt, # image: Image.Image | |
multiimage_combined, # multiimages: List[UploadedFile] or List[Tuple[Image, str]] | |
is_multiimage, # is_multiimage: str | |
seed, | |
ss_guidance_strength, | |
ss_sampling_steps, | |
slat_guidance_strength, | |
slat_sampling_steps, | |
multiimage_algo, | |
], | |
outputs=[ | |
output_buf, | |
video_output | |
] | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") | |
if torch.cuda.is_available(): | |
pipeline.cuda() | |
print("CUDA is available. Using GPU.") | |
else: | |
print("CUDA not available. Falling back to CPU.") | |
try: | |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg | |
except: | |
pass | |
print(f"CUDA Available: {torch.cuda.is_available()}") | |
print(f"CUDA Version: {torch.version.cuda}") | |
print(f"Number of GPUs: {torch.cuda.device_count()}") | |
demo.launch(debug=True) | |