File size: 5,088 Bytes
fef0a8d
99eb93c
fef0a8d
 
4cab0f7
38e087a
8fa5734
294c109
7820541
45099c6
542f90d
fef0a8d
294c109
fef0a8d
 
 
 
 
f8a64f8
45099c6
24f9533
5268082
e52a62d
0629ecb
17e2cc5
294c109
 
4bd5128
96f2f76
 
 
 
 
 
 
 
60ab476
c81c545
4cab0f7
ab966e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cab0f7
 
957abbb
3faef64
d7a2675
17e2cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef14932
17e2cc5
 
 
bcbc1e7
c81c545
ab966e8
d7a2675
 
ab966e8
 
d7a2675
 
ab966e8
 
 
ba45770
 
ab966e8
ba45770
c81c545
d7a2675
ba45770
d7a2675
 
 
 
 
 
 
 
 
 
bcbc1e7
c81c545
957abbb
 
c81c545
5268082
294c109
5268082
 
 
46010b5
 
 
ab966e8
 
18799c5
43e06cc
 
d7a2675
 
5268082
 
 
5a25e75
5268082
 
 
ab966e8
5268082
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Imports
import gradio as gr
import spaces
import torch
import os
import math
import gc
import librosa
from PIL import Image, ImageSequence
from decord import VideoReader, cpu
from transformers import AutoModel, AutoTokenizer, AutoProcessor

# Variables
DEVICE = "auto"
if DEVICE == "auto":
    DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[SYSTEM] | Using {DEVICE} type compute device.")

DEFAULT_INPUT = "Describe in one short sentence."
MAX_FRAMES = 64
AUDIO_SR = 16000

model_name = "openbmb/MiniCPM-o-2_6"

repo = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation="sdpa", torch_dtype=torch.bfloat16, init_vision=True, init_audio=True, init_tts=False).to(DEVICE)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)

css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

instruction = "You will analyze image, GIF, video, and audio input, then use as much keywords to describe the given content and take as much guesses of what it could be."

filetypes = {
    "Image": {
        "extensions": [".jpg",".jpeg",".png",".bmp"],
        "instruction": "Analyze the 'β–ˆ' image.",
        "function": "build_image"
    },
    "GIF":{
        "extensions": [".gif"],
        "instruction": "Analyze the 'β–ˆ' GIF.",
        "function": "build_gif"
    },
    "Video": {
        "extensions": [".mp4",".mov",".avi",".mkv"],
        "instruction": "Analyze the 'β–ˆ' video including the audio associated with the video.",
        "function": "build_video"
    },
    "Audio": {
        "extensions": [".wav",".mp3",".flac",".aac"],
        "instruction": "Analyze the 'β–ˆ' audio.",
        "function": "build_audio"
    },
}

# Functions
def uniform_sample(sequence, n): return sequence[::max(len(sequence) // n,1)][:n]
    
def build_image(path): return [Image.open(path).convert("RGB")]

def build_gif(path):
    frames = [f.copy().convert("RGB") for f in ImageSequence.Iterator(Image.open(path))]
    return uniform_sample(frames, MAX_FRAMES)

def build_video(path):
    vr = VideoReader(path, ctx=cpu(0))
    idx = uniform_sample(range(len(vr)), MAX_FRAMES)
    frames = [Image.fromarray(f.astype("uint8")) for f in vr.get_batch(idx).asnumpy()]
    audio = build_audio(path)[0]
    units = []
    for i, frame in enumerate(frames):
        chunk = audio[i*AUDIO_SR:(i+1)*AUDIO_SR]
        if not chunk.size: break
        units.extend(["<unit>", frame, chunk])
    return units
    
def build_audio(path):
    audio, _ = librosa.load(path, sr=AUDIO_SR, mono=True)
    return [audio]

@spaces.GPU(duration=30)
def generate(filepath, input=DEFAULT_INPUT, sampling=False, temperature=0.7, top_p=0.8, top_k=100, repetition_penalty=1.05, max_tokens=512):
    if not input: return "No input provided."

    extension = os.path.splitext(filepath)[1].lower()
    filetype = next((k for k, v in filetypes.items() if extension in v["extensions"]), None)
    if not filetype: return "Unsupported file type."

    filetype_data = filetypes[filetype]
    input_prefix = filetype_data["instruction"].replace("β–ˆ", os.path.basename(filepath))

    content = globals()[filetype_data["function"]](filepath) + [f"{instruction}\n{input_prefix}\n{input}"]
    messages = [{ "role": "user", "content": content }]
    
    print(messages)
    
    output = repo.chat(
        msgs=messages,
        tokenizer=tokenizer,
        sampling=sampling,
        temperature= temperature,
        top_p=top_p,
        top_k=top_k,
        repetition_penalty=repetition_penalty,
        max_new_tokens=max_tokens,
        omni_input=True,
        use_image_id=False,
        max_slice_nums=9
    )
    
    torch.cuda.empty_cache()
    gc.collect()
    
    return output

def cloud():
    print("[CLOUD] | Space maintained.")

# Initialize
with gr.Blocks(css=css) as main:
    with gr.Column():
        file = gr.File(label="File", file_types=["image", "video", "audio"], type="filepath")
        input = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Input")
        sampling = gr.Checkbox(value=True, label="Sampling")
        temperature = gr.Slider(minimum=0, maximum=2, step=0.01, value=0.7, label="Temperature")
        top_p = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.8, label="Top P")
        top_k = gr.Slider(minimum=0, maximum=1000, step=1, value=50, label="Top K")
        repetition_penalty = gr.Slider(minimum=0, maximum=2, step=0.01, value=1.05, label="Repetition Penalty")
        max_tokens = gr.Slider(minimum=1, maximum=4096, step=1, value=512, label="Max Tokens")
        submit = gr.Button("β–Ά")
        maintain = gr.Button("☁️")

    with gr.Column():
        output = gr.Textbox(lines=1, value="", label="Output")

    submit.click(fn=generate, inputs=[file, input, sampling, temperature, top_p, top_k, repetition_penalty, max_tokens], outputs=[output], queue=False)
    maintain.click(cloud, inputs=[], outputs=[], queue=False)

main.launch(show_api=True)