Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -37,30 +37,39 @@ footer {
|
|
37 |
|
38 |
global_instruction = "You will analyze image, GIF, video, and audio input, then use as much keywords to describe the given content and take as much guesses of what it could be."
|
39 |
|
40 |
-
input_prefixes = {
|
41 |
-
"Image": "Analyze the 'β' image.",
|
42 |
-
"GIF": "Analyze the 'β' GIF.",
|
43 |
-
"Video": "Analyze the 'β' video including the audio associated with the video.",
|
44 |
-
"Audio": "Analyze the 'β' audio.",
|
45 |
-
}
|
46 |
-
|
47 |
filetypes = {
|
48 |
-
"Image":
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
}
|
53 |
|
54 |
# Functions
|
55 |
uniform_sample=lambda seq, n: seq[::max(len(seq) // n,1)][:n]
|
56 |
|
57 |
-
def build_video(
|
58 |
-
vr = VideoReader(
|
59 |
i = uniform_sample(range(len(vr)), MAX_FRAMES)
|
60 |
batch = vr.get_batch(i).asnumpy()
|
61 |
frames = [Image.fromarray(frame.astype("uint8")) for frame in batch]
|
62 |
|
63 |
-
audio = build_audio(
|
64 |
|
65 |
audio_length = math.ceil(len(audio) / AUDIO_SR)
|
66 |
total_length = max(1, min(len(frames), audio_length))
|
@@ -76,40 +85,36 @@ def build_video(path):
|
|
76 |
|
77 |
return contents
|
78 |
|
79 |
-
def build_image(
|
80 |
-
image = Image.open(
|
81 |
return image
|
82 |
|
83 |
-
def build_gif(
|
84 |
-
image = Image.open(
|
85 |
frames = [f.copy().convert("RGB") for f in ImageSequence.Iterator(image)]
|
86 |
frames = uniform_sample(frames, MAX_FRAMES)
|
87 |
return frames
|
88 |
|
89 |
-
def build_audio(
|
90 |
-
audio, _ = librosa.load(
|
91 |
return audio
|
92 |
|
93 |
@spaces.GPU(duration=30)
|
94 |
-
def generate(
|
95 |
if not input: return "No input provided."
|
96 |
|
97 |
-
extension = os.path.splitext(
|
98 |
-
filetype = next((k for k, v in filetypes.items() if extension in v), None)
|
99 |
if not filetype: return "Unsupported file type."
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
}
|
109 |
-
|
110 |
-
instruction = f"{global_instruction}\n{prefix}\n{instruction}"
|
111 |
-
omni_content = builder_map[filetype](input)
|
112 |
-
msgs = [{ "role": "user", "content": [omni_content, instruction] }]
|
113 |
|
114 |
print(msgs)
|
115 |
|
@@ -138,8 +143,8 @@ def cloud():
|
|
138 |
# Initialize
|
139 |
with gr.Blocks(css=css) as main:
|
140 |
with gr.Column():
|
141 |
-
|
142 |
-
|
143 |
sampling = gr.Checkbox(value=False, label="Sampling")
|
144 |
temperature = gr.Slider(minimum=0, maximum=2, step=0.01, value=1, label="Temperature")
|
145 |
top_p = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.95, label="Top P")
|
@@ -152,7 +157,7 @@ with gr.Blocks(css=css) as main:
|
|
152 |
with gr.Column():
|
153 |
output = gr.Textbox(lines=1, value="", label="Output")
|
154 |
|
155 |
-
submit.click(fn=generate, inputs=[
|
156 |
maintain.click(cloud, inputs=[], outputs=[], queue=False)
|
157 |
|
158 |
main.launch(show_api=True)
|
|
|
37 |
|
38 |
global_instruction = "You will analyze image, GIF, video, and audio input, then use as much keywords to describe the given content and take as much guesses of what it could be."
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
filetypes = {
|
41 |
+
"Image": {
|
42 |
+
"extensions": [".jpg",".jpeg",".png",".bmp"],
|
43 |
+
"instruction": "Analyze the 'β' image.",
|
44 |
+
"function": "build_image"
|
45 |
+
},
|
46 |
+
"GIF":{
|
47 |
+
"extensions": [".gif"],
|
48 |
+
"instruction": "Analyze the 'β' GIF.",
|
49 |
+
"function": "build_gif"
|
50 |
+
},
|
51 |
+
"Video": {
|
52 |
+
"extensions": [".mp4",".mov",".avi",".mkv"],
|
53 |
+
"instruction": "Analyze the 'β' video including the audio associated with the video.",
|
54 |
+
"function": "build_video"
|
55 |
+
},
|
56 |
+
"Audio": {
|
57 |
+
"extensions": [".wav",".mp3",".flac",".aac"],
|
58 |
+
"instruction": "Analyze the 'β' audio.",
|
59 |
+
"function": "build_audio"
|
60 |
+
},
|
61 |
}
|
62 |
|
63 |
# Functions
|
64 |
uniform_sample=lambda seq, n: seq[::max(len(seq) // n,1)][:n]
|
65 |
|
66 |
+
def build_video(filepath):
|
67 |
+
vr = VideoReader(filepath, ctx = cpu(0))
|
68 |
i = uniform_sample(range(len(vr)), MAX_FRAMES)
|
69 |
batch = vr.get_batch(i).asnumpy()
|
70 |
frames = [Image.fromarray(frame.astype("uint8")) for frame in batch]
|
71 |
|
72 |
+
audio = build_audio(filepath)
|
73 |
|
74 |
audio_length = math.ceil(len(audio) / AUDIO_SR)
|
75 |
total_length = max(1, min(len(frames), audio_length))
|
|
|
85 |
|
86 |
return contents
|
87 |
|
88 |
+
def build_image(filepath):
|
89 |
+
image = Image.open(filepath).convert("RGB")
|
90 |
return image
|
91 |
|
92 |
+
def build_gif(filepath):
|
93 |
+
image = Image.open(filepath)
|
94 |
frames = [f.copy().convert("RGB") for f in ImageSequence.Iterator(image)]
|
95 |
frames = uniform_sample(frames, MAX_FRAMES)
|
96 |
return frames
|
97 |
|
98 |
+
def build_audio(filepath):
|
99 |
+
audio, _ = librosa.load(filepath, sr=AUDIO_SR, mono=True)
|
100 |
return audio
|
101 |
|
102 |
@spaces.GPU(duration=30)
|
103 |
+
def generate(filepath, input=DEFAULT_INPUT, sampling=False, temperature=0.7, top_p=0.8, top_k=100, repetition_penalty=1.05, max_tokens=512):
|
104 |
if not input: return "No input provided."
|
105 |
|
106 |
+
extension = os.path.splitext(filepath)[1].lower()
|
107 |
+
filetype = next((k for k, v in filetypes.items() if extension in v["extensions"]), None)
|
108 |
if not filetype: return "Unsupported file type."
|
109 |
|
110 |
+
filetype_data = filetypes[filetype]
|
111 |
+
input_prefix = filetype_data["instruction"].replace("β", os.path.basename(filepath))
|
112 |
+
|
113 |
+
file_content = globals()[filetype_data["function"]](filepath)
|
114 |
+
full_instruction=f"{global_instruction}\n{input_prefix}\n{instruction}"
|
115 |
+
content = (file_content if isinstance(file_content, list) else [file_content]) + [full_instruction]
|
116 |
+
|
117 |
+
msgs = [{ "role": "user", "content": content }]
|
|
|
|
|
|
|
|
|
118 |
|
119 |
print(msgs)
|
120 |
|
|
|
143 |
# Initialize
|
144 |
with gr.Blocks(css=css) as main:
|
145 |
with gr.Column():
|
146 |
+
file = gr.File(label="File", file_types=["image", "video", "audio"], type="filepath")
|
147 |
+
input = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Input")
|
148 |
sampling = gr.Checkbox(value=False, label="Sampling")
|
149 |
temperature = gr.Slider(minimum=0, maximum=2, step=0.01, value=1, label="Temperature")
|
150 |
top_p = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.95, label="Top P")
|
|
|
157 |
with gr.Column():
|
158 |
output = gr.Textbox(lines=1, value="", label="Output")
|
159 |
|
160 |
+
submit.click(fn=generate, inputs=[file, input, sampling, temperature, top_p, top_k, repetition_penalty, max_tokens], outputs=[output], queue=False)
|
161 |
maintain.click(cloud, inputs=[], outputs=[], queue=False)
|
162 |
|
163 |
main.launch(show_api=True)
|