File size: 4,872 Bytes
fef0a8d
99eb93c
fef0a8d
 
4cab0f7
294c109
7820541
45099c6
542f90d
fef0a8d
294c109
fef0a8d
 
 
 
 
5268082
45099c6
5268082
e52a62d
0629ecb
4bd5128
294c109
 
4bd5128
96f2f76
 
 
 
 
 
 
 
7820541
 
 
 
 
 
 
4cab0f7
 
7820541
4cab0f7
 
 
 
 
 
 
45099c6
4cab0f7
 
294c109
 
 
 
 
 
 
4cab0f7
 
 
 
 
 
 
5268082
4cab0f7
5a25e75
029aec2
294c109
7820541
c60c480
294c109
7820541
4cab0f7
 
 
 
 
 
 
 
7820541
4cab0f7
7820541
 
4cab0f7
7820541
4cab0f7
 
7820541
4cab0f7
 
 
5a25e75
7820541
 
 
5a25e75
 
294c109
5a25e75
af21e2a
5268082
 
 
 
 
1b6a68d
5268082
294c109
 
5a25e75
8a86647
294c109
5268082
294c109
5268082
 
 
46010b5
 
 
4cab0f7
5268082
 
eb3d2f3
5268082
 
eb3d2f3
5268082
 
 
5a25e75
5268082
 
 
5a25e75
5268082
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Imports
import gradio as gr
import spaces
import torch
import os
import librosa
from PIL import Image, ImageSequence
from decord import VideoReader, cpu
from transformers import AutoModel, AutoTokenizer, AutoProcessor

# Variables
DEVICE = "auto"
if DEVICE == "auto":
    DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[SYSTEM] | Using {DEVICE} type compute device.")

DEFAULT_INPUT = "Describe in one paragraph."
MAX_FRAMES = 64

model_name = "openbmb/MiniCPM-o-2_6"

repo = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation="sdpa", torch_dtype=torch.bfloat16).to(DEVICE)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)

css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

input_prefixes = {
    "Image": "(A image file called β–ˆ has been attached) ",
    "GIF": "(A GIF file called β–ˆ has been attached) ",
    "Video": "(A video with audio file called β–ˆ has been attached) ",
    "Audio": "(A audio file called β–ˆ has been attached) ",
}

filetypes = {
    "Image": [".jpg", ".jpeg", ".png", ".bmp"],
    "GIF": [".gif"],
    "Video": [".mp4", ".mov", ".avi", ".mkv"],
    "Audio": [".wav", ".mp3", ".flac", ".aac"],
}

def uniform_sample(idxs, n):
    gap = len(idxs) / n
    return [idxs[int(i * gap + gap / 2)] for i in range(n)]

def encode_video(path):
    vr = VideoReader(path, ctx=cpu(0))
    fps = round(vr.get_avg_fps())
    idxs = list(range(0, len(vr), fps))
    if len(idxs) > MAX_FRAMES:
        idxs = uniform_sample(idxs, MAX_FRAMES)
    frames = vr.get_batch(idxs).asnumpy()
    return [Image.fromarray(f.astype("uint8")) for f in frames]

def encode_gif(path):
    img = Image.open(path)
    frames = [frame.copy().convert("RGB") for frame in ImageSequence.Iterator(img)]
    if len(frames) > MAX_FRAMES:
        frames = uniform_sample(frames, MAX_FRAMES)
    return frames
    
@spaces.GPU(duration=60)
def generate(input, instruction=DEFAULT_INPUT, sampling=False, temperature=0.7, top_p=0.8, top_k=100, repetition_penalty=1.05, max_tokens=512):
    print(input)
    print(instruction)

    if not input:
        return "No input provided."

    extension = os.path.splitext(input)[1].lower()
    filetype = None
    for category, extensions in filetypes.items():
        if extension in extensions:
            filetype = category
            break

    content = []
    if filetype == "Image":
        image = Image.open(input).convert("RGB")
        content.append(image)
    elif filetype in ["Video", "GIF"]:
        frames = encode_gif(input) if filetype == "GIF" else encode_video(input_file)
        content.extend(frames)
        audio = librosa.load(input, sr=16000, mono=True)
        content.append(audio)
    elif filetype == "Audio":
        audio = librosa.load(input, sr=16000, mono=True)
        content.append(audio)
    else:
        return "Unsupported file type."

    filename = os.path.basename(input_file)
    prefix = input_prefixes[filetype].replace("β–ˆ", filename)
    content.append(prefix + instruction)
    inputs_payload = [{"role": "user", "content": content}]

    params = {
        "msgs": inputs_payload,
        "tokenizer": tokenizer,
        "sampling": sampling,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "repetition_penalty": repetition_penalty,
        "max_new_tokens": max_tokens,
    }

    output = repo.chat(**params)
    
    print(output)

    return output

def cloud():
    print("[CLOUD] | Space maintained.")

# Initialize
with gr.Blocks(css=css) as main:
    with gr.Column():
        input = gr.File(label="Input", file_types=["image", "video", "audio"], type="filepath")
        instruction = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Instruction")
        sampling = gr.Checkbox(value=False, label="Sampling")
        temperature = gr.Slider(minimum=0.01, maximum=1.99, step=0.01, value=0.7, label="Temperature")
        top_p = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.8, label="Top P")
        top_k = gr.Slider(minimum=0, maximum=1000, step=1, value=100, label="Top K")
        repetition_penalty = gr.Slider(minimum=0.01, maximum=1.99, step=0.01, value=1.05, label="Repetition Penalty")
        max_tokens = gr.Slider(minimum=1, maximum=4096, step=1, value=512, label="Max Tokens")
        submit = gr.Button("β–Ά")
        maintain = gr.Button("☁️")

    with gr.Column():
        output = gr.Textbox(lines=1, value="", label="Output")

    submit.click(fn=generate, inputs=[input, instruction, sampling, temperature, top_p, top_k, repetition_penalty, max_tokens], outputs=[output], queue=False)
    maintain.click(cloud, inputs=[], outputs=[], queue=False)

main.launch(show_api=True)