Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -17,7 +17,7 @@ print(f"[SYSTEM] | Using {DEVICE} type compute device.")
|
|
17 |
DEFAULT_INPUT = "Describe in one paragraph."
|
18 |
MAX_FRAMES = 64
|
19 |
|
20 |
-
repo_name = "openbmb/MiniCPM-o-2_6
|
21 |
repo = AutoModel.from_pretrained(repo_name, trust_remote_code=True)
|
22 |
tokenizer = AutoTokenizer.from_pretrained(repo_name, trust_remote_code=True)
|
23 |
|
@@ -48,19 +48,28 @@ def encode_video(video_path):
|
|
48 |
return frames
|
49 |
|
50 |
@spaces.GPU(duration=60)
|
51 |
-
def generate(image, video, instruction=DEFAULT_INPUT, sampling=False, temperature=0.7, top_p=0.8, top_k=100, repetition_penalty=1.05, max_tokens=512):
|
52 |
# repo.to(DEVICE)
|
53 |
|
54 |
print(image)
|
55 |
print(video)
|
|
|
56 |
print(instruction)
|
57 |
|
58 |
-
if not
|
59 |
image_data = Image.fromarray(image.astype('uint8'), 'RGB')
|
60 |
inputs = [{"role": "user", "content": [image_data, instruction]}]
|
61 |
-
|
62 |
video_data = encode_video(video)
|
63 |
-
inputs = [{"role": "user", "content": video_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
parameters = {
|
66 |
"sampling": sampling,
|
@@ -69,8 +78,6 @@ def generate(image, video, instruction=DEFAULT_INPUT, sampling=False, temperatur
|
|
69 |
"top_k": top_k,
|
70 |
"repetition_penalty": repetition_penalty,
|
71 |
"max_new_tokens": max_tokens,
|
72 |
-
"use_image_id": False,
|
73 |
-
"max_slice_nums": 2,
|
74 |
}
|
75 |
|
76 |
output = repo.chat(image=None, msgs=inputs, tokenizer=tokenizer, **parameters)
|
@@ -90,6 +97,7 @@ with gr.Blocks(css=css) as main:
|
|
90 |
with gr.Column():
|
91 |
input = gr.Image(label="Image")
|
92 |
input_2 = gr.Video(label="Video")
|
|
|
93 |
instruction = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Instruction")
|
94 |
sampling = gr.Checkbox(value=False, label="Sampling")
|
95 |
temperature = gr.Slider(minimum=0.01, maximum=1.99, step=0.01, value=0.7, label="Temperature")
|
@@ -103,7 +111,7 @@ with gr.Blocks(css=css) as main:
|
|
103 |
with gr.Column():
|
104 |
output = gr.Textbox(lines=1, value="", label="Output")
|
105 |
|
106 |
-
submit.click(fn=generate, inputs=[input, input_2, instruction, sampling, temperature, top_p, top_k, repetition_penalty, max_tokens], outputs=[output], queue=False)
|
107 |
maintain.click(cloud, inputs=[], outputs=[], queue=False)
|
108 |
|
109 |
main.launch(show_api=True)
|
|
|
17 |
DEFAULT_INPUT = "Describe in one paragraph."
|
18 |
MAX_FRAMES = 64
|
19 |
|
20 |
+
repo_name = "openbmb/MiniCPM-o-2_6" # "openbmb/MiniCPM-V-2_6-int4" # "openbmb/MiniCPM-V-2_6"
|
21 |
repo = AutoModel.from_pretrained(repo_name, trust_remote_code=True)
|
22 |
tokenizer = AutoTokenizer.from_pretrained(repo_name, trust_remote_code=True)
|
23 |
|
|
|
48 |
return frames
|
49 |
|
50 |
@spaces.GPU(duration=60)
|
51 |
+
def generate(image, video, audio, instruction=DEFAULT_INPUT, sampling=False, temperature=0.7, top_p=0.8, top_k=100, repetition_penalty=1.05, max_tokens=512):
|
52 |
# repo.to(DEVICE)
|
53 |
|
54 |
print(image)
|
55 |
print(video)
|
56 |
+
print(audio)
|
57 |
print(instruction)
|
58 |
|
59 |
+
if image is not None:
|
60 |
image_data = Image.fromarray(image.astype('uint8'), 'RGB')
|
61 |
inputs = [{"role": "user", "content": [image_data, instruction]}]
|
62 |
+
elif video is not None:
|
63 |
video_data = encode_video(video)
|
64 |
+
inputs = [{"role": "user", "content": [video_data, instruction]}]
|
65 |
+
elif audio is not None:
|
66 |
+
if isinstance(audio, str):
|
67 |
+
audio_data, _ = librosa.load(audio, sr=16000, mono=True)
|
68 |
+
else:
|
69 |
+
audio_data = audio
|
70 |
+
inputs = [{"role": "user", "content": [audio_data, instruction]}]
|
71 |
+
else:
|
72 |
+
return "No input provided."
|
73 |
|
74 |
parameters = {
|
75 |
"sampling": sampling,
|
|
|
78 |
"top_k": top_k,
|
79 |
"repetition_penalty": repetition_penalty,
|
80 |
"max_new_tokens": max_tokens,
|
|
|
|
|
81 |
}
|
82 |
|
83 |
output = repo.chat(image=None, msgs=inputs, tokenizer=tokenizer, **parameters)
|
|
|
97 |
with gr.Column():
|
98 |
input = gr.Image(label="Image")
|
99 |
input_2 = gr.Video(label="Video")
|
100 |
+
input_3 = gr.Audio(label="Audio"),
|
101 |
instruction = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Instruction")
|
102 |
sampling = gr.Checkbox(value=False, label="Sampling")
|
103 |
temperature = gr.Slider(minimum=0.01, maximum=1.99, step=0.01, value=0.7, label="Temperature")
|
|
|
111 |
with gr.Column():
|
112 |
output = gr.Textbox(lines=1, value="", label="Output")
|
113 |
|
114 |
+
submit.click(fn=generate, inputs=[input, input_2, input_3, instruction, sampling, temperature, top_p, top_k, repetition_penalty, max_tokens], outputs=[output], queue=False)
|
115 |
maintain.click(cloud, inputs=[], outputs=[], queue=False)
|
116 |
|
117 |
main.launch(show_api=True)
|