Spaces:
Sleeping
Sleeping
Commit
·
184700f
1
Parent(s):
24242bc
edits
Browse files
app.py
CHANGED
@@ -3,32 +3,24 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
3 |
import torch
|
4 |
import os
|
5 |
|
6 |
-
|
7 |
-
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
11 |
-
# Load
|
12 |
-
MODEL_NAME = "SpiceyToad/demo-falc" # Replace with your
|
13 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME,
|
14 |
model = AutoModelForCausalLM.from_pretrained(
|
15 |
-
MODEL_NAME, torch_dtype=torch.bfloat16,
|
16 |
)
|
17 |
|
18 |
-
# Automatically determine if CUDA is available for GPU support
|
19 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
-
model = model.to(device)
|
21 |
-
|
22 |
@app.post("/generate")
|
23 |
async def generate_text(request: Request):
|
24 |
-
# Parse input JSON
|
25 |
data = await request.json()
|
26 |
prompt = data.get("prompt", "")
|
27 |
max_length = data.get("max_length", 50)
|
28 |
|
29 |
-
|
30 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
31 |
outputs = model.generate(inputs["input_ids"], max_length=max_length)
|
32 |
-
|
33 |
-
|
34 |
-
return {"generated_text": generated_text}
|
|
|
3 |
import torch
|
4 |
import os
|
5 |
|
6 |
+
HF_API_TOKEN = os.getenv("HF_API_TOKEN") # Hugging Face API token
|
|
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
10 |
+
# Load Falcon 7B
|
11 |
+
MODEL_NAME = "SpiceyToad/demo-falc" # Replace with your model
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_API_TOKEN)
|
13 |
model = AutoModelForCausalLM.from_pretrained(
|
14 |
+
MODEL_NAME, device_map="auto", torch_dtype=torch.bfloat16, token=HF_API_TOKEN
|
15 |
)
|
16 |
|
|
|
|
|
|
|
|
|
17 |
@app.post("/generate")
|
18 |
async def generate_text(request: Request):
|
|
|
19 |
data = await request.json()
|
20 |
prompt = data.get("prompt", "")
|
21 |
max_length = data.get("max_length", 50)
|
22 |
|
23 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
|
24 |
outputs = model.generate(inputs["input_ids"], max_length=max_length)
|
25 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
26 |
+
return {"generated_text": response}
|
|