Spaces:
Sleeping
Sleeping
Commit
·
24242bc
1
Parent(s):
156851a
Fix API token and device handling
Browse files
app.py
CHANGED
@@ -1,13 +1,23 @@
|
|
1 |
from fastapi import FastAPI, Request
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
|
|
|
|
|
|
|
|
4 |
|
5 |
app = FastAPI()
|
6 |
|
7 |
# Load the Falcon 7B model and tokenizer
|
8 |
-
MODEL_NAME = "SpiceyToad/demo-falc" # Replace with your
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
10 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
@app.post("/generate")
|
13 |
async def generate_text(request: Request):
|
@@ -17,8 +27,8 @@ async def generate_text(request: Request):
|
|
17 |
max_length = data.get("max_length", 50)
|
18 |
|
19 |
# Tokenize input and generate text
|
20 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(
|
21 |
outputs = model.generate(inputs["input_ids"], max_length=max_length)
|
22 |
-
|
23 |
|
24 |
-
return {"generated_text":
|
|
|
1 |
from fastapi import FastAPI, Request
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Retrieve the Hugging Face API token from the environment
|
7 |
+
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
11 |
# Load the Falcon 7B model and tokenizer
|
12 |
+
MODEL_NAME = "SpiceyToad/demo-falc" # Replace with your Hugging Face repo name
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_auth_token=HF_API_TOKEN)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(
|
15 |
+
MODEL_NAME, torch_dtype=torch.bfloat16, device_map="auto", use_auth_token=HF_API_TOKEN
|
16 |
+
)
|
17 |
+
|
18 |
+
# Automatically determine if CUDA is available for GPU support
|
19 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
+
model = model.to(device)
|
21 |
|
22 |
@app.post("/generate")
|
23 |
async def generate_text(request: Request):
|
|
|
27 |
max_length = data.get("max_length", 50)
|
28 |
|
29 |
# Tokenize input and generate text
|
30 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
31 |
outputs = model.generate(inputs["input_ids"], max_length=max_length)
|
32 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
33 |
|
34 |
+
return {"generated_text": generated_text}
|