saliencymaps / app.py
MateuszLis's picture
Update app.py
fe67183 verified
import streamlit as st
from streamlit_back_camera_input import back_camera_input
import matplotlib.pyplot as plt
import tensorflow as tf
loaded_model = tf.saved_model.load("model/")
loaded_model = loaded_model.signatures["serving_default"]
def get_target_shape(original_shape):
original_aspect_ratio = original_shape[0] / original_shape[1]
square_mode = abs(original_aspect_ratio - 1.0)
landscape_mode = abs(original_aspect_ratio - 240 / 320)
portrait_mode = abs(original_aspect_ratio - 320 / 240)
best_mode = min(square_mode, landscape_mode, portrait_mode)
if best_mode == square_mode:
target_shape = (320, 320)
elif best_mode == landscape_mode:
target_shape = (240, 320)
else:
target_shape = (320, 240)
return target_shape
def preprocess_input(input_image, target_shape):
input_tensor = tf.expand_dims(input_image, axis=0)
input_tensor = tf.image.resize(
input_tensor, target_shape, preserve_aspect_ratio=True
)
vertical_padding = target_shape[0] - input_tensor.shape[1]
horizontal_padding = target_shape[1] - input_tensor.shape[2]
vertical_padding_1 = vertical_padding // 2
vertical_padding_2 = vertical_padding - vertical_padding_1
horizontal_padding_1 = horizontal_padding // 2
horizontal_padding_2 = horizontal_padding - horizontal_padding_1
input_tensor = tf.pad(
input_tensor,
[
[0, 0],
[vertical_padding_1, vertical_padding_2],
[horizontal_padding_1, horizontal_padding_2],
[0, 0],
],
)
return (
input_tensor,
[vertical_padding_1, vertical_padding_2],
[horizontal_padding_1, horizontal_padding_2],
)
def postprocess_output(
output_tensor, vertical_padding, horizontal_padding, original_shape
):
output_tensor = output_tensor[
:,
vertical_padding[0] : output_tensor.shape[1] - vertical_padding[1],
horizontal_padding[0] : output_tensor.shape[2] - horizontal_padding[1],
:,
]
output_tensor = tf.image.resize(output_tensor, original_shape)
output_array = output_tensor.numpy().squeeze()
output_array = plt.cm.inferno(output_array)[..., :3]
return output_array
def compute_saliency(input_image, alpha=0.65):
if input_image is not None:
original_shape = input_image.shape[:2]
target_shape = get_target_shape(original_shape)
input_tensor, vertical_padding, horizontal_padding = preprocess_input(
input_image, target_shape
)
saliency_map = loaded_model(input_tensor)["output"]
saliency_map = postprocess_output(
saliency_map, vertical_padding, horizontal_padding, original_shape
)
blended_image = alpha * saliency_map + (1 - alpha) * input_image / 255
return blended_image
st.title("Visual Saliency Prediction")
col1, col2, col3 = st.columns([1, 1, 1])
with col1:
input_image = st.file_uploader("Upload Input Image", type=["jpg", "jpeg", "png"])
with col2:
output_image = back_camera_input()
if image:
st.image(image)
with col3:
btn = st.button("Compute")
if btn:
if input_image is not None:
# Perform computation
saliency_map = compute_saliency(input_image)
# Display output
output_image.image(saliency_map, caption="Saliency Map", use_column_width=True)
else:
st.warning("Please upload an image.")