Spaces:
Runtime error
Runtime error
import streamlit as st | |
from streamlit_back_camera_input import back_camera_input | |
import matplotlib.pyplot as plt | |
import tensorflow as tf | |
loaded_model = tf.saved_model.load("model/") | |
loaded_model = loaded_model.signatures["serving_default"] | |
def get_target_shape(original_shape): | |
original_aspect_ratio = original_shape[0] / original_shape[1] | |
square_mode = abs(original_aspect_ratio - 1.0) | |
landscape_mode = abs(original_aspect_ratio - 240 / 320) | |
portrait_mode = abs(original_aspect_ratio - 320 / 240) | |
best_mode = min(square_mode, landscape_mode, portrait_mode) | |
if best_mode == square_mode: | |
target_shape = (320, 320) | |
elif best_mode == landscape_mode: | |
target_shape = (240, 320) | |
else: | |
target_shape = (320, 240) | |
return target_shape | |
def preprocess_input(input_image, target_shape): | |
input_tensor = tf.expand_dims(input_image, axis=0) | |
input_tensor = tf.image.resize( | |
input_tensor, target_shape, preserve_aspect_ratio=True | |
) | |
vertical_padding = target_shape[0] - input_tensor.shape[1] | |
horizontal_padding = target_shape[1] - input_tensor.shape[2] | |
vertical_padding_1 = vertical_padding // 2 | |
vertical_padding_2 = vertical_padding - vertical_padding_1 | |
horizontal_padding_1 = horizontal_padding // 2 | |
horizontal_padding_2 = horizontal_padding - horizontal_padding_1 | |
input_tensor = tf.pad( | |
input_tensor, | |
[ | |
[0, 0], | |
[vertical_padding_1, vertical_padding_2], | |
[horizontal_padding_1, horizontal_padding_2], | |
[0, 0], | |
], | |
) | |
return ( | |
input_tensor, | |
[vertical_padding_1, vertical_padding_2], | |
[horizontal_padding_1, horizontal_padding_2], | |
) | |
def postprocess_output( | |
output_tensor, vertical_padding, horizontal_padding, original_shape | |
): | |
output_tensor = output_tensor[ | |
:, | |
vertical_padding[0] : output_tensor.shape[1] - vertical_padding[1], | |
horizontal_padding[0] : output_tensor.shape[2] - horizontal_padding[1], | |
:, | |
] | |
output_tensor = tf.image.resize(output_tensor, original_shape) | |
output_array = output_tensor.numpy().squeeze() | |
output_array = plt.cm.inferno(output_array)[..., :3] | |
return output_array | |
def compute_saliency(input_image, alpha=0.65): | |
if input_image is not None: | |
original_shape = input_image.shape[:2] | |
target_shape = get_target_shape(original_shape) | |
input_tensor, vertical_padding, horizontal_padding = preprocess_input( | |
input_image, target_shape | |
) | |
saliency_map = loaded_model(input_tensor)["output"] | |
saliency_map = postprocess_output( | |
saliency_map, vertical_padding, horizontal_padding, original_shape | |
) | |
blended_image = alpha * saliency_map + (1 - alpha) * input_image / 255 | |
return blended_image | |
st.title("Visual Saliency Prediction") | |
col1, col2, col3 = st.columns([1, 1, 1]) | |
with col1: | |
input_image = st.file_uploader("Upload Input Image", type=["jpg", "jpeg", "png"]) | |
with col2: | |
output_image = back_camera_input() | |
if image: | |
st.image(image) | |
with col3: | |
btn = st.button("Compute") | |
if btn: | |
if input_image is not None: | |
# Perform computation | |
saliency_map = compute_saliency(input_image) | |
# Display output | |
output_image.image(saliency_map, caption="Saliency Map", use_column_width=True) | |
else: | |
st.warning("Please upload an image.") | |