import streamlit as st from streamlit_back_camera_input import back_camera_input import matplotlib.pyplot as plt import tensorflow as tf loaded_model = tf.saved_model.load("model/") loaded_model = loaded_model.signatures["serving_default"] def get_target_shape(original_shape): original_aspect_ratio = original_shape[0] / original_shape[1] square_mode = abs(original_aspect_ratio - 1.0) landscape_mode = abs(original_aspect_ratio - 240 / 320) portrait_mode = abs(original_aspect_ratio - 320 / 240) best_mode = min(square_mode, landscape_mode, portrait_mode) if best_mode == square_mode: target_shape = (320, 320) elif best_mode == landscape_mode: target_shape = (240, 320) else: target_shape = (320, 240) return target_shape def preprocess_input(input_image, target_shape): input_tensor = tf.expand_dims(input_image, axis=0) input_tensor = tf.image.resize( input_tensor, target_shape, preserve_aspect_ratio=True ) vertical_padding = target_shape[0] - input_tensor.shape[1] horizontal_padding = target_shape[1] - input_tensor.shape[2] vertical_padding_1 = vertical_padding // 2 vertical_padding_2 = vertical_padding - vertical_padding_1 horizontal_padding_1 = horizontal_padding // 2 horizontal_padding_2 = horizontal_padding - horizontal_padding_1 input_tensor = tf.pad( input_tensor, [ [0, 0], [vertical_padding_1, vertical_padding_2], [horizontal_padding_1, horizontal_padding_2], [0, 0], ], ) return ( input_tensor, [vertical_padding_1, vertical_padding_2], [horizontal_padding_1, horizontal_padding_2], ) def postprocess_output( output_tensor, vertical_padding, horizontal_padding, original_shape ): output_tensor = output_tensor[ :, vertical_padding[0] : output_tensor.shape[1] - vertical_padding[1], horizontal_padding[0] : output_tensor.shape[2] - horizontal_padding[1], :, ] output_tensor = tf.image.resize(output_tensor, original_shape) output_array = output_tensor.numpy().squeeze() output_array = plt.cm.inferno(output_array)[..., :3] return output_array def compute_saliency(input_image, alpha=0.65): if input_image is not None: original_shape = input_image.shape[:2] target_shape = get_target_shape(original_shape) input_tensor, vertical_padding, horizontal_padding = preprocess_input( input_image, target_shape ) saliency_map = loaded_model(input_tensor)["output"] saliency_map = postprocess_output( saliency_map, vertical_padding, horizontal_padding, original_shape ) blended_image = alpha * saliency_map + (1 - alpha) * input_image / 255 return blended_image st.title("Visual Saliency Prediction") col1, col2, col3 = st.columns([1, 1, 1]) with col1: input_image = st.file_uploader("Upload Input Image", type=["jpg", "jpeg", "png"]) with col2: output_image = back_camera_input() if image: st.image(image) with col3: btn = st.button("Compute") if btn: if input_image is not None: # Perform computation saliency_map = compute_saliency(input_image) # Display output output_image.image(saliency_map, caption="Saliency Map", use_column_width=True) else: st.warning("Please upload an image.")