Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
import pandas as pd | |
import altair as alt | |
def calculate_pile_loads(P, Mx, My, pile_coords): | |
""" | |
Calculates the load on each pile in a group subjected to a vertical load and moments. | |
Args: | |
P (float): The total vertical load applied to the pile cap (in kN). | |
Mx (float): The moment about the x-axis (in kN-m). | |
My (float): The moment about the y-axis (in kN-m). | |
pile_coords (list of tuples): A list of (x, y) coordinates for each pile. | |
Returns: | |
list: A list of the calculated loads on each pile. | |
""" | |
n = len(pile_coords) | |
if n == 0: | |
return [] | |
x_coords = np.array([coord[0] for coord in pile_coords]) | |
y_coords = np.array([coord[1] for coord in pile_coords]) | |
sum_x_sq = np.sum(x_coords**2) | |
sum_y_sq = np.sum(y_coords**2) | |
loads = [] | |
for i in range(n): | |
x_i = x_coords[i] | |
y_i = y_coords[i] | |
load_P = P / n | |
load_Mx = (Mx * y_i) / sum_y_sq if sum_y_sq != 0 else 0 | |
load_My = (My * x_i) / sum_x_sq if sum_x_sq != 0 else 0 | |
total_load = load_P + load_Mx + load_My | |
loads.append(total_load) | |
return loads | |
st.set_page_config(layout="wide", page_title="Pile Load Calculator") | |
st.title("Pile Load Calculator") | |
st.write("This application calculates the load on each pile in a foundation based on applied loads and moments.") | |
# --- Sidebar for Inputs --- | |
st.sidebar.header("Input Parameters") | |
# Applied Loads | |
st.sidebar.subheader("Applied Loads (kN, kN-m)") | |
P = st.sidebar.number_input("Vertical Point Load (P)", value=4500.0, step=100.0) | |
Mx = st.sidebar.number_input("Moment about X-axis (Mx)", value=680.0, step=50.0) | |
My = st.sidebar.number_input("Moment about Y-axis (My)", value=400.0, step=50.0) | |
# Footing Self-Weight | |
st.sidebar.subheader("Footing Self-Weight (kN)") | |
footing_self_weight = st.sidebar.number_input("Footing Self-Weight", value=225.0, step=25.0) | |
# Pile Coordinates | |
st.sidebar.subheader("Pile Coordinates (meters)") | |
if 'pile_coords' not in st.session_state: | |
st.session_state.pile_coords = [(-3, 3), (0, 3), (3, 3),(-3, 0), (0, 0), (3, 0),(-3, -3),(0, -3),(3, -3)] | |
def add_pile(): | |
st.session_state.pile_coords.append((0.0, 0.0)) | |
def remove_pile(index): | |
st.session_state.pile_coords.pop(index) | |
for i, (x, y) in enumerate(st.session_state.pile_coords): | |
cols = st.sidebar.columns([2, 2, 1]) | |
new_x = cols[0].number_input(f"Pile {i+1} X", value=float(x), key=f"x{i}") | |
new_y = cols[1].number_input(f"Pile {i+1} Y", value=float(y), key=f"y{i}") | |
st.session_state.pile_coords[i] = (new_x, new_y) | |
if cols[2].button("X", key=f"del{i}"): | |
remove_pile(i) | |
st.rerun() | |
st.sidebar.button("Add Pile", on_click=add_pile) | |
# --- Main Panel for Results --- | |
total_vertical_load = P + footing_self_weight | |
pile_loads = calculate_pile_loads(total_vertical_load, Mx, My, st.session_state.pile_coords) | |
# Display Results in a Table | |
st.header("Calculation Results") | |
results_df = pd.DataFrame({ | |
'Pile': [f"Pile {i+1}" for i in range(len(st.session_state.pile_coords))], | |
'X-coordinate (m)': [f"{c[0]:.2f}" for c in st.session_state.pile_coords], | |
'Y-coordinate (m)': [f"{c[1]:.2f}" for c in st.session_state.pile_coords], | |
'Calculated Load (kN)': [f"{l:.2f}" for l in pile_loads] | |
}) | |
st.dataframe(results_df.set_index('Pile')) | |
# Display Summary of Loads | |
st.subheader("Load Summary") | |
st.write(f"**Total Applied Vertical Load (P + Self-Weight):** {total_vertical_load:.2f} kN") | |
st.write(f"**Maximum Pile Load (Compression):** {max(pile_loads):.2f} kN") | |
st.write(f"**Minimum Pile Load (Tension/Uplift):** {min(pile_loads):.2f} kN") | |
# Visualization of Pile Loads | |
st.header("Pile Load Visualization") | |
if st.session_state.pile_coords: | |
vis_df = pd.DataFrame({ | |
'x': [c[0] for c in st.session_state.pile_coords], | |
'y': [c[1] for c in st.session_state.pile_coords], | |
'load': pile_loads, | |
'load_text': [f"{l:.1f} kN" for l in pile_loads] | |
}) | |
# Determine the domain for the color scale to center on zero | |
max_abs_load = max(abs(vis_df['load'].min()), abs(vis_df['load'].max())) | |
# Calculate padding for the chart domain | |
x_range = vis_df['x'].max() - vis_df['x'].min() | |
y_range = vis_df['y'].max() - vis_df['y'].min() | |
x_buffer = x_range * 0.2 # 20% buffer | |
y_buffer = y_range * 0.2 # 20% buffer | |
base_chart = alt.Chart(vis_df).encode( | |
x=alt.X('x:Q', title='X-coordinate (m)', | |
scale=alt.Scale(domain=[vis_df['x'].min() - x_buffer, vis_df['x'].max() + x_buffer]), | |
axis=alt.Axis(titleFontSize=14, labelFontSize=12)), | |
y=alt.Y('y:Q', title='Y-coordinate (m)', | |
scale=alt.Scale(domain=[vis_df['y'].min() - y_buffer, vis_df['y'].max() + y_buffer]), | |
axis=alt.Axis(titleFontSize=14, labelFontSize=12)), | |
tooltip=[ | |
alt.Tooltip('x:Q', title='X-coordinate', format='.2f'), | |
alt.Tooltip('y:Q', title='Y-coordinate', format='.2f'), | |
alt.Tooltip('load:Q', title='Load (kN)', format='.2f') | |
] | |
) | |
# Points with color scale | |
points = base_chart.mark_point(size=300, filled=True, stroke='black', strokeWidth=0.5).encode( | |
color=alt.Color('load:Q', title='Load (kN)', | |
scale=alt.Scale(scheme='redblue', domain=[-max_abs_load, max_abs_load], reverse=True)) | |
) | |
# Text labels for the loads | |
text = base_chart.mark_text(align='center', dy=-15, fontSize=12).encode( | |
text='load_text:N' | |
) | |
chart = (points + text).properties( | |
title=alt.TitleParams( | |
text='Pile Location and Load Distribution', | |
subtitle='Red for Tension/Uplift, Blue for Compression', | |
fontSize=20, | |
subtitleFontSize=16 | |
), | |
padding={"left": 20, "top": 20, "right": 20, "bottom": 20} # Add padding | |
).interactive() | |
st.altair_chart(chart, use_container_width=True) | |