import streamlit as st import numpy as np import pandas as pd import altair as alt def calculate_pile_loads(P, Mx, My, pile_coords): """ Calculates the load on each pile in a group subjected to a vertical load and moments. Args: P (float): The total vertical load applied to the pile cap (in kN). Mx (float): The moment about the x-axis (in kN-m). My (float): The moment about the y-axis (in kN-m). pile_coords (list of tuples): A list of (x, y) coordinates for each pile. Returns: list: A list of the calculated loads on each pile. """ n = len(pile_coords) if n == 0: return [] x_coords = np.array([coord[0] for coord in pile_coords]) y_coords = np.array([coord[1] for coord in pile_coords]) sum_x_sq = np.sum(x_coords**2) sum_y_sq = np.sum(y_coords**2) loads = [] for i in range(n): x_i = x_coords[i] y_i = y_coords[i] load_P = P / n load_Mx = (Mx * y_i) / sum_y_sq if sum_y_sq != 0 else 0 load_My = (My * x_i) / sum_x_sq if sum_x_sq != 0 else 0 total_load = load_P + load_Mx + load_My loads.append(total_load) return loads st.set_page_config(layout="wide", page_title="Pile Load Calculator") st.title("Pile Load Calculator") st.write("This application calculates the load on each pile in a foundation based on applied loads and moments.") # --- Sidebar for Inputs --- st.sidebar.header("Input Parameters") # Applied Loads st.sidebar.subheader("Applied Loads (kN, kN-m)") P = st.sidebar.number_input("Vertical Point Load (P)", value=4500.0, step=100.0) Mx = st.sidebar.number_input("Moment about X-axis (Mx)", value=680.0, step=50.0) My = st.sidebar.number_input("Moment about Y-axis (My)", value=400.0, step=50.0) # Footing Self-Weight st.sidebar.subheader("Footing Self-Weight (kN)") footing_self_weight = st.sidebar.number_input("Footing Self-Weight", value=225.0, step=25.0) # Pile Coordinates st.sidebar.subheader("Pile Coordinates (meters)") if 'pile_coords' not in st.session_state: st.session_state.pile_coords = [(-3, 3), (0, 3), (3, 3),(-3, 0), (0, 0), (3, 0),(-3, -3),(0, -3),(3, -3)] def add_pile(): st.session_state.pile_coords.append((0.0, 0.0)) def remove_pile(index): st.session_state.pile_coords.pop(index) for i, (x, y) in enumerate(st.session_state.pile_coords): cols = st.sidebar.columns([2, 2, 1]) new_x = cols[0].number_input(f"Pile {i+1} X", value=float(x), key=f"x{i}") new_y = cols[1].number_input(f"Pile {i+1} Y", value=float(y), key=f"y{i}") st.session_state.pile_coords[i] = (new_x, new_y) if cols[2].button("X", key=f"del{i}"): remove_pile(i) st.rerun() st.sidebar.button("Add Pile", on_click=add_pile) # --- Main Panel for Results --- total_vertical_load = P + footing_self_weight pile_loads = calculate_pile_loads(total_vertical_load, Mx, My, st.session_state.pile_coords) # Display Results in a Table st.header("Calculation Results") results_df = pd.DataFrame({ 'Pile': [f"Pile {i+1}" for i in range(len(st.session_state.pile_coords))], 'X-coordinate (m)': [f"{c[0]:.2f}" for c in st.session_state.pile_coords], 'Y-coordinate (m)': [f"{c[1]:.2f}" for c in st.session_state.pile_coords], 'Calculated Load (kN)': [f"{l:.2f}" for l in pile_loads] }) st.dataframe(results_df.set_index('Pile')) # Display Summary of Loads st.subheader("Load Summary") st.write(f"**Total Applied Vertical Load (P + Self-Weight):** {total_vertical_load:.2f} kN") st.write(f"**Maximum Pile Load (Compression):** {max(pile_loads):.2f} kN") st.write(f"**Minimum Pile Load (Tension/Uplift):** {min(pile_loads):.2f} kN") # Visualization of Pile Loads st.header("Pile Load Visualization") if st.session_state.pile_coords: vis_df = pd.DataFrame({ 'x': [c[0] for c in st.session_state.pile_coords], 'y': [c[1] for c in st.session_state.pile_coords], 'load': pile_loads, 'load_text': [f"{l:.1f} kN" for l in pile_loads] }) # Determine the domain for the color scale to center on zero max_abs_load = max(abs(vis_df['load'].min()), abs(vis_df['load'].max())) # Calculate padding for the chart domain x_range = vis_df['x'].max() - vis_df['x'].min() y_range = vis_df['y'].max() - vis_df['y'].min() x_buffer = x_range * 0.2 # 20% buffer y_buffer = y_range * 0.2 # 20% buffer base_chart = alt.Chart(vis_df).encode( x=alt.X('x:Q', title='X-coordinate (m)', scale=alt.Scale(domain=[vis_df['x'].min() - x_buffer, vis_df['x'].max() + x_buffer]), axis=alt.Axis(titleFontSize=14, labelFontSize=12)), y=alt.Y('y:Q', title='Y-coordinate (m)', scale=alt.Scale(domain=[vis_df['y'].min() - y_buffer, vis_df['y'].max() + y_buffer]), axis=alt.Axis(titleFontSize=14, labelFontSize=12)), tooltip=[ alt.Tooltip('x:Q', title='X-coordinate', format='.2f'), alt.Tooltip('y:Q', title='Y-coordinate', format='.2f'), alt.Tooltip('load:Q', title='Load (kN)', format='.2f') ] ) # Points with color scale points = base_chart.mark_point(size=300, filled=True, stroke='black', strokeWidth=0.5).encode( color=alt.Color('load:Q', title='Load (kN)', scale=alt.Scale(scheme='redblue', domain=[-max_abs_load, max_abs_load], reverse=True)) ) # Text labels for the loads text = base_chart.mark_text(align='center', dy=-15, fontSize=12).encode( text='load_text:N' ) chart = (points + text).properties( title=alt.TitleParams( text='Pile Location and Load Distribution', subtitle='Red for Tension/Uplift, Blue for Compression', fontSize=20, subtitleFontSize=16 ), padding={"left": 20, "top": 20, "right": 20, "bottom": 20} # Add padding ).interactive() st.altair_chart(chart, use_container_width=True)