crack_detection / app.py
Sompote's picture
Upload app.py
56ec8b1 verified
raw
history blame
17.7 kB
import gradio as gr
import requests
import json
import base64
from PIL import Image, ImageDraw, ImageFont
import io
def process_with_openrouter(image, prompt, api_key, model="google/gemini-2.5-pro", temperature=0.5):
"""Process image with OpenRouter API for object detection"""
if not api_key:
return "Please enter your OpenRouter API key", "error"
if image is None:
return "Please upload an image", "error"
try:
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_base64 = base64.b64encode(buffered.getvalue()).decode()
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
data = {
"model": model,
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{img_base64}"}
}
]
}
],
"temperature": temperature
}
response = requests.post(
"https://openrouter.ai/api/v1/chat/completions",
headers=headers,
json=data,
timeout=60
)
if response.status_code == 200:
result = response.json()
content = result['choices'][0]['message']['content']
if '```json' in content:
content = content.split('```json')[1].split('```')[0].strip()
elif '```' in content:
content = content.split('```')[1].split('```')[0].strip()
return content, None
else:
return f"Error: {response.status_code} - {response.text}", "error"
except Exception as e:
return f"Error processing request: {str(e)}", "error"
def draw_bounding_boxes(image, detections):
"""Draw bounding boxes with detailed labels on the image"""
if not detections or len(detections) == 0:
return image
annotated_image = image.copy()
draw = ImageDraw.Draw(annotated_image)
try:
font = ImageFont.truetype("/System/Library/Fonts/Arial.ttf", 14)
small_font = ImageFont.truetype("/System/Library/Fonts/Arial.ttf", 12)
except:
font = ImageFont.load_default()
small_font = ImageFont.load_default()
colors = ["#FF0000", "#00FF00", "#0000FF", "#FFFF00", "#FF00FF", "#00FFFF", "#FFA500", "#800080"]
for i, detection in enumerate(detections):
if all(key in detection for key in ['x', 'y', 'width', 'height']):
x = detection['x'] * image.width
y = detection['y'] * image.height
width = detection['width'] * image.width
height = detection['height'] * image.height
# Get detection information
label = detection.get('label', f'Detection {i+1}')
class_name = detection.get('class', 'unknown')
details = detection.get('details', '')
criteria_match = detection.get('criteria_match', '')
confidence = detection.get('confidence', 1.0)
x1, y1 = int(x), int(y)
x2, y2 = int(x + width), int(y + height)
x1 = max(0, min(x1, image.width))
y1 = max(0, min(y1, image.height))
x2 = max(0, min(x2, image.width))
y2 = max(0, min(y2, image.height))
color = colors[i % len(colors)]
# Draw bounding box with thicker line for better visibility
draw.rectangle([x1, y1, x2, y2], outline=color, width=4)
# Create multi-line label with detailed information
display_lines = []
display_lines.append(f"{class_name} ({confidence:.2f})")
if details:
# Truncate details if too long
details_short = details[:40] + "..." if len(details) > 40 else details
display_lines.append(details_short)
if criteria_match:
display_lines.append(f"Criteria: {criteria_match}")
# Calculate total label size
max_width = 0
total_height = 0
line_heights = []
for line in display_lines:
text_bbox = draw.textbbox((0, 0), line, font=small_font)
line_width = text_bbox[2] - text_bbox[0]
line_height = text_bbox[3] - text_bbox[1]
max_width = max(max_width, line_width)
total_height += line_height + 2
line_heights.append(line_height)
# Position label above the box, or below if no space above
if y1 - total_height - 4 >= 0:
label_y = y1 - total_height - 4
else:
label_y = y2 + 2
label_x = x1
# Ensure label stays within image bounds
if label_x + max_width > image.width:
label_x = image.width - max_width - 4
# Draw label background
draw.rectangle(
[label_x - 2, label_y, label_x + max_width + 4, label_y + total_height + 2],
fill=color,
outline=color
)
# Draw each line of text
current_y = label_y + 2
for j, line in enumerate(display_lines):
draw.text((label_x + 2, current_y), line, fill="white", font=small_font)
current_y += line_heights[j] + 2
return annotated_image
def create_detection_prompt(detailed_classes, confidence_threshold=0.5, detection_mode="specific"):
"""Create a detection prompt for detailed class specifications with different modes"""
if isinstance(detailed_classes, str):
detailed_classes = [cls.strip() for cls in detailed_classes.split('\n') if cls.strip()]
# Build detailed detection instructions
if detection_mode == "specific":
condition_text = "ONLY detect objects that match these specific detailed criteria. Ignore all other objects:"
elif detection_mode == "include":
condition_text = "Detect objects matching these detailed criteria AND any other objects you can identify:"
else: # "exclude"
condition_text = "Detect all objects EXCEPT those matching these detailed criteria. Avoid detecting:"
# Format each detailed class specification
detailed_specs = []
for i, spec in enumerate(detailed_classes, 1):
detailed_specs.append(f"{i}. {spec}")
classes_text = "\n".join(detailed_specs) if detailed_specs else "No specific criteria provided"
prompt = f"""{condition_text}
{classes_text}
Detection Instructions:
- Carefully analyze each object against the detailed specifications above
- Only include detections with confidence above {confidence_threshold}
- For each detection, provide specific measurements, characteristics, or details when possible
- Be precise about the criteria matching (e.g., actual crack width, size measurements, specific conditions)
Output a JSON list where each entry contains:
- "x": normalized x coordinate (0-1) of top-left corner
- "y": normalized y coordinate (0-1) of top-left corner
- "width": normalized width (0-1) of the bounding box
- "height": normalized height (0-1) of the bounding box
- "label": detailed description with measurements/characteristics and confidence score
- "confidence": confidence score (0-1)
- "class": the general category name
- "details": specific measurements, characteristics, or conditions observed
- "criteria_match": which detailed criteria this detection matches (reference number from list above)
Example format for crack detection:
[{{"x": 0.1, "y": 0.2, "width": 0.3, "height": 0.4, "label": "crack width ~3mm, length ~15cm (0.92)", "confidence": 0.92, "class": "crack", "details": "width: 3mm, length: 15cm, surface: concrete", "criteria_match": 1}}]"""
return prompt
def create_interface():
"""Create the Gradio interface for object detection"""
with gr.Blocks(title="Detailed Object Detection", theme=gr.themes.Soft()) as demo:
gr.Markdown("# πŸ” Detailed Object Detection with Custom Specifications")
gr.Markdown("Detect objects with detailed specifications (e.g., 'crack width more than 2mm', 'rust spots larger than 5cm')")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## βš™οΈ Configuration")
api_key = gr.Textbox(
label="OpenRouter API Key",
placeholder="Enter your OpenRouter API key...",
type="password"
)
model = gr.Dropdown(
choices=[
"google/gemini-2.5-pro",
"google/gemini-1.5-pro",
"google/gemini-1.5-flash",
"anthropic/claude-3.5-sonnet",
"openai/gpt-4o",
"openai/gpt-4o-mini"
],
value="google/gemini-2.5-pro",
label="Detection Model"
)
detection_mode = gr.Radio(
choices=[
("Detect Only These Specifications", "specific"),
("Include These + Others", "include"),
("Exclude These Specifications", "exclude")
],
value="specific",
label="Detection Mode",
info="How to handle the specified detailed criteria"
)
detailed_specifications = gr.Textbox(
label="Detailed Detection Specifications",
placeholder="""Enter each specification on a new line, e.g.:
crack width more than 2mm
rust spots larger than 5cm in diameter
concrete spalling deeper than 1cm
structural damage with visible deformation
paint peeling areas greater than 10cmΒ²""",
value="""crack width more than 2mm
rust spots larger than 5cm in diameter
concrete spalling deeper than 1cm""",
lines=8,
info="Enter detailed specifications, one per line"
)
confidence_threshold = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.5,
step=0.05,
label="Confidence Threshold",
info="Minimum confidence for detection"
)
temperature = gr.Slider(
minimum=0,
maximum=1,
value=0.3,
step=0.05,
label="Temperature",
info="Lower values for more consistent results"
)
image_input = gr.Image(
type="pil",
label="Upload Image for Detection"
)
detect_btn = gr.Button("πŸš€ Detect Objects", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("## πŸ“Š Detection Results")
annotated_image = gr.Image(
label="Detected Objects",
type="pil"
)
detection_results = gr.Textbox(
label="Detection Details (JSON)",
lines=10,
show_copy_button=True
)
detection_summary = gr.Textbox(
label="Detection Summary",
lines=3
)
def process_detection(image, detailed_specs, conf_threshold, api_key_val, model_val, temp_val, mode_val):
if not api_key_val:
return None, "❌ Please enter your OpenRouter API key", "No API key provided"
if image is None:
return None, "❌ Please upload an image", "No image uploaded"
if not detailed_specs or not detailed_specs.strip():
return None, "❌ Please enter at least one detailed specification", "No specifications provided"
try:
prompt = create_detection_prompt(detailed_specs, conf_threshold, mode_val)
result, error = process_with_openrouter(image, prompt, api_key_val, model_val, temp_val)
if error:
return None, f"❌ Error: {result}", "Detection failed"
detections = json.loads(result)
if isinstance(detections, list) and len(detections) > 0:
annotated_img = draw_bounding_boxes(image, detections)
filtered_detections = [d for d in detections if d.get('confidence', 1.0) >= conf_threshold]
mode_descriptions = {
"specific": "Detecting only objects matching detailed specifications",
"include": "Including specified detailed criteria + other objects",
"exclude": "Excluding objects matching detailed specifications"
}
summary_text = f"βœ… {mode_descriptions.get(mode_val, 'Detection')} - Found {len(filtered_detections)} objects"
if filtered_detections:
# Group by class and show details
class_details = {}
for det in filtered_detections:
class_name = det.get('class', 'unknown')
details = det.get('details', '')
criteria_match = det.get('criteria_match', '')
if class_name not in class_details:
class_details[class_name] = []
class_details[class_name].append({
'details': details,
'criteria': criteria_match,
'confidence': det.get('confidence', 1.0)
})
summary_text += "\n\nDetailed Results:"
for class_name, items in class_details.items():
summary_text += f"\nβ€’ {class_name} ({len(items)} found):"
for item in items[:3]: # Show first 3 items
summary_text += f"\n - {item['details']} (conf: {item['confidence']:.2f})"
if item['criteria']:
summary_text += f" [criteria: {item['criteria']}]"
if len(items) > 3:
summary_text += f"\n ... and {len(items)-3} more"
return annotated_img, json.dumps(filtered_detections, indent=2), summary_text
else:
return image, "No objects detected matching detailed specifications", "No detections matching criteria above confidence threshold"
except json.JSONDecodeError:
return None, f"❌ Invalid JSON response: {result}", "JSON parsing failed"
except Exception as e:
return None, f"❌ Error: {str(e)}", "Processing error"
detect_btn.click(
process_detection,
inputs=[image_input, detailed_specifications, confidence_threshold, api_key, model, temperature, detection_mode],
outputs=[annotated_image, detection_results, detection_summary]
)
gr.Markdown("""
## πŸ’‘ Usage Tips
- **Specific Mode**: Only detect objects matching your detailed specifications
- **Include Mode**: Detect your specified criteria plus any other objects found
- **Exclude Mode**: Detect everything except objects matching your specifications
### Example Detailed Specifications:
```
crack width more than 2mm
rust spots larger than 5cm in diameter
concrete spalling deeper than 1cm
structural damage with visible deformation
paint peeling areas greater than 10cmΒ²
corrosion affecting more than 20% of surface area
missing bolts or fasteners
water damage stains larger than 15cm
```
- Enter one detailed specification per line
- Be specific about measurements, sizes, conditions
- Adjust confidence threshold to filter weak detections
- Use lower temperature values for consistent results
- Get your API key from [openrouter.ai](https://openrouter.ai/)
""")
return demo
if __name__ == "__main__":
print("πŸš€ Starting Object Detection App...")
demo = create_interface()
demo.launch(share=False, inbrowser=True)