File size: 17,742 Bytes
56ec8b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import gradio as gr
import requests
import json
import base64
from PIL import Image, ImageDraw, ImageFont
import io

def process_with_openrouter(image, prompt, api_key, model="google/gemini-2.5-pro", temperature=0.5):
    """Process image with OpenRouter API for object detection"""
    if not api_key:
        return "Please enter your OpenRouter API key", "error"
    
    if image is None:
        return "Please upload an image", "error"
    
    try:
        buffered = io.BytesIO()
        image.save(buffered, format="PNG")
        img_base64 = base64.b64encode(buffered.getvalue()).decode()
        
        headers = {
            "Authorization": f"Bearer {api_key}",
            "Content-Type": "application/json"
        }
        
        data = {
            "model": model,
            "messages": [
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": prompt},
                        {
                            "type": "image_url",
                            "image_url": {"url": f"data:image/png;base64,{img_base64}"}
                        }
                    ]
                }
            ],
            "temperature": temperature
        }
        
        response = requests.post(
            "https://openrouter.ai/api/v1/chat/completions",
            headers=headers,
            json=data,
            timeout=60
        )
        
        if response.status_code == 200:
            result = response.json()
            content = result['choices'][0]['message']['content']
            
            if '```json' in content:
                content = content.split('```json')[1].split('```')[0].strip()
            elif '```' in content:
                content = content.split('```')[1].split('```')[0].strip()
            
            return content, None
        else:
            return f"Error: {response.status_code} - {response.text}", "error"
            
    except Exception as e:
        return f"Error processing request: {str(e)}", "error"

def draw_bounding_boxes(image, detections):
    """Draw bounding boxes with detailed labels on the image"""
    if not detections or len(detections) == 0:
        return image
    
    annotated_image = image.copy()
    draw = ImageDraw.Draw(annotated_image)
    
    try:
        font = ImageFont.truetype("/System/Library/Fonts/Arial.ttf", 14)
        small_font = ImageFont.truetype("/System/Library/Fonts/Arial.ttf", 12)
    except:
        font = ImageFont.load_default()
        small_font = ImageFont.load_default()
    
    colors = ["#FF0000", "#00FF00", "#0000FF", "#FFFF00", "#FF00FF", "#00FFFF", "#FFA500", "#800080"]
    
    for i, detection in enumerate(detections):
        if all(key in detection for key in ['x', 'y', 'width', 'height']):
            x = detection['x'] * image.width
            y = detection['y'] * image.height
            width = detection['width'] * image.width
            height = detection['height'] * image.height
            
            # Get detection information
            label = detection.get('label', f'Detection {i+1}')
            class_name = detection.get('class', 'unknown')
            details = detection.get('details', '')
            criteria_match = detection.get('criteria_match', '')
            confidence = detection.get('confidence', 1.0)
            
            x1, y1 = int(x), int(y)
            x2, y2 = int(x + width), int(y + height)
            
            x1 = max(0, min(x1, image.width))
            y1 = max(0, min(y1, image.height))
            x2 = max(0, min(x2, image.width))
            y2 = max(0, min(y2, image.height))
            
            color = colors[i % len(colors)]
            
            # Draw bounding box with thicker line for better visibility
            draw.rectangle([x1, y1, x2, y2], outline=color, width=4)
            
            # Create multi-line label with detailed information
            display_lines = []
            display_lines.append(f"{class_name} ({confidence:.2f})")
            
            if details:
                # Truncate details if too long
                details_short = details[:40] + "..." if len(details) > 40 else details
                display_lines.append(details_short)
            
            if criteria_match:
                display_lines.append(f"Criteria: {criteria_match}")
            
            # Calculate total label size
            max_width = 0
            total_height = 0
            line_heights = []
            
            for line in display_lines:
                text_bbox = draw.textbbox((0, 0), line, font=small_font)
                line_width = text_bbox[2] - text_bbox[0]
                line_height = text_bbox[3] - text_bbox[1]
                max_width = max(max_width, line_width)
                total_height += line_height + 2
                line_heights.append(line_height)
            
            # Position label above the box, or below if no space above
            if y1 - total_height - 4 >= 0:
                label_y = y1 - total_height - 4
            else:
                label_y = y2 + 2
            
            label_x = x1
            
            # Ensure label stays within image bounds
            if label_x + max_width > image.width:
                label_x = image.width - max_width - 4
            
            # Draw label background
            draw.rectangle(
                [label_x - 2, label_y, label_x + max_width + 4, label_y + total_height + 2],
                fill=color,
                outline=color
            )
            
            # Draw each line of text
            current_y = label_y + 2
            for j, line in enumerate(display_lines):
                draw.text((label_x + 2, current_y), line, fill="white", font=small_font)
                current_y += line_heights[j] + 2
    
    return annotated_image

def create_detection_prompt(detailed_classes, confidence_threshold=0.5, detection_mode="specific"):
    """Create a detection prompt for detailed class specifications with different modes"""
    if isinstance(detailed_classes, str):
        detailed_classes = [cls.strip() for cls in detailed_classes.split('\n') if cls.strip()]
    
    # Build detailed detection instructions
    if detection_mode == "specific":
        condition_text = "ONLY detect objects that match these specific detailed criteria. Ignore all other objects:"
    elif detection_mode == "include":
        condition_text = "Detect objects matching these detailed criteria AND any other objects you can identify:"
    else:  # "exclude"
        condition_text = "Detect all objects EXCEPT those matching these detailed criteria. Avoid detecting:"
    
    # Format each detailed class specification
    detailed_specs = []
    for i, spec in enumerate(detailed_classes, 1):
        detailed_specs.append(f"{i}. {spec}")
    
    classes_text = "\n".join(detailed_specs) if detailed_specs else "No specific criteria provided"
    
    prompt = f"""{condition_text}

{classes_text}

Detection Instructions:
- Carefully analyze each object against the detailed specifications above
- Only include detections with confidence above {confidence_threshold}
- For each detection, provide specific measurements, characteristics, or details when possible
- Be precise about the criteria matching (e.g., actual crack width, size measurements, specific conditions)

Output a JSON list where each entry contains:
- "x": normalized x coordinate (0-1) of top-left corner
- "y": normalized y coordinate (0-1) of top-left corner  
- "width": normalized width (0-1) of the bounding box
- "height": normalized height (0-1) of the bounding box
- "label": detailed description with measurements/characteristics and confidence score
- "confidence": confidence score (0-1)
- "class": the general category name
- "details": specific measurements, characteristics, or conditions observed
- "criteria_match": which detailed criteria this detection matches (reference number from list above)

Example format for crack detection:
[{{"x": 0.1, "y": 0.2, "width": 0.3, "height": 0.4, "label": "crack width ~3mm, length ~15cm (0.92)", "confidence": 0.92, "class": "crack", "details": "width: 3mm, length: 15cm, surface: concrete", "criteria_match": 1}}]"""
    
    return prompt

def create_interface():
    """Create the Gradio interface for object detection"""
    with gr.Blocks(title="Detailed Object Detection", theme=gr.themes.Soft()) as demo:
        gr.Markdown("# πŸ” Detailed Object Detection with Custom Specifications")
        gr.Markdown("Detect objects with detailed specifications (e.g., 'crack width more than 2mm', 'rust spots larger than 5cm')")
        
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("## βš™οΈ Configuration")
                api_key = gr.Textbox(
                    label="OpenRouter API Key",
                    placeholder="Enter your OpenRouter API key...",
                    type="password"
                )
                
                model = gr.Dropdown(
                    choices=[
                        "google/gemini-2.5-pro",
                        "google/gemini-1.5-pro",
                        "google/gemini-1.5-flash",
                        "anthropic/claude-3.5-sonnet",
                        "openai/gpt-4o",
                        "openai/gpt-4o-mini"
                    ],
                    value="google/gemini-2.5-pro",
                    label="Detection Model"
                )
                
                detection_mode = gr.Radio(
                    choices=[
                        ("Detect Only These Specifications", "specific"),
                        ("Include These + Others", "include"), 
                        ("Exclude These Specifications", "exclude")
                    ],
                    value="specific",
                    label="Detection Mode",
                    info="How to handle the specified detailed criteria"
                )
                
                detailed_specifications = gr.Textbox(
                    label="Detailed Detection Specifications",
                    placeholder="""Enter each specification on a new line, e.g.:
crack width more than 2mm
rust spots larger than 5cm in diameter
concrete spalling deeper than 1cm
structural damage with visible deformation
paint peeling areas greater than 10cmΒ²""",
                    value="""crack width more than 2mm
rust spots larger than 5cm in diameter
concrete spalling deeper than 1cm""",
                    lines=8,
                    info="Enter detailed specifications, one per line"
                )
                
                confidence_threshold = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.5,
                    step=0.05,
                    label="Confidence Threshold",
                    info="Minimum confidence for detection"
                )
                
                temperature = gr.Slider(
                    minimum=0,
                    maximum=1,
                    value=0.3,
                    step=0.05,
                    label="Temperature",
                    info="Lower values for more consistent results"
                )
                
                image_input = gr.Image(
                    type="pil",
                    label="Upload Image for Detection"
                )
                
                detect_btn = gr.Button("πŸš€ Detect Objects", variant="primary", size="lg")
                
            with gr.Column(scale=1):
                gr.Markdown("## πŸ“Š Detection Results")
                
                annotated_image = gr.Image(
                    label="Detected Objects",
                    type="pil"
                )
                
                detection_results = gr.Textbox(
                    label="Detection Details (JSON)",
                    lines=10,
                    show_copy_button=True
                )
                
                detection_summary = gr.Textbox(
                    label="Detection Summary",
                    lines=3
                )
        
        def process_detection(image, detailed_specs, conf_threshold, api_key_val, model_val, temp_val, mode_val):
            if not api_key_val:
                return None, "❌ Please enter your OpenRouter API key", "No API key provided"
            
            if image is None:
                return None, "❌ Please upload an image", "No image uploaded"
            
            if not detailed_specs or not detailed_specs.strip():
                return None, "❌ Please enter at least one detailed specification", "No specifications provided"
            
            try:
                prompt = create_detection_prompt(detailed_specs, conf_threshold, mode_val)
                
                result, error = process_with_openrouter(image, prompt, api_key_val, model_val, temp_val)
                
                if error:
                    return None, f"❌ Error: {result}", "Detection failed"
                
                detections = json.loads(result)
                
                if isinstance(detections, list) and len(detections) > 0:
                    annotated_img = draw_bounding_boxes(image, detections)
                    
                    filtered_detections = [d for d in detections if d.get('confidence', 1.0) >= conf_threshold]
                    
                    mode_descriptions = {
                        "specific": "Detecting only objects matching detailed specifications",
                        "include": "Including specified detailed criteria + other objects", 
                        "exclude": "Excluding objects matching detailed specifications"
                    }
                    
                    summary_text = f"βœ… {mode_descriptions.get(mode_val, 'Detection')} - Found {len(filtered_detections)} objects"
                    
                    if filtered_detections:
                        # Group by class and show details
                        class_details = {}
                        for det in filtered_detections:
                            class_name = det.get('class', 'unknown')
                            details = det.get('details', '')
                            criteria_match = det.get('criteria_match', '')
                            
                            if class_name not in class_details:
                                class_details[class_name] = []
                            
                            class_details[class_name].append({
                                'details': details,
                                'criteria': criteria_match,
                                'confidence': det.get('confidence', 1.0)
                            })
                        
                        summary_text += "\n\nDetailed Results:"
                        for class_name, items in class_details.items():
                            summary_text += f"\nβ€’ {class_name} ({len(items)} found):"
                            for item in items[:3]:  # Show first 3 items
                                summary_text += f"\n  - {item['details']} (conf: {item['confidence']:.2f})"
                                if item['criteria']:
                                    summary_text += f" [criteria: {item['criteria']}]"
                            if len(items) > 3:
                                summary_text += f"\n  ... and {len(items)-3} more"
                    
                    return annotated_img, json.dumps(filtered_detections, indent=2), summary_text
                else:
                    return image, "No objects detected matching detailed specifications", "No detections matching criteria above confidence threshold"
                    
            except json.JSONDecodeError:
                return None, f"❌ Invalid JSON response: {result}", "JSON parsing failed"
            except Exception as e:
                return None, f"❌ Error: {str(e)}", "Processing error"
        
        detect_btn.click(
            process_detection,
            inputs=[image_input, detailed_specifications, confidence_threshold, api_key, model, temperature, detection_mode],
            outputs=[annotated_image, detection_results, detection_summary]
        )
        
        gr.Markdown("""
        ## πŸ’‘ Usage Tips
        - **Specific Mode**: Only detect objects matching your detailed specifications
        - **Include Mode**: Detect your specified criteria plus any other objects found
        - **Exclude Mode**: Detect everything except objects matching your specifications
        
        ### Example Detailed Specifications:
        ```
        crack width more than 2mm
        rust spots larger than 5cm in diameter
        concrete spalling deeper than 1cm
        structural damage with visible deformation
        paint peeling areas greater than 10cmΒ²
        corrosion affecting more than 20% of surface area
        missing bolts or fasteners
        water damage stains larger than 15cm
        ```
        
        - Enter one detailed specification per line
        - Be specific about measurements, sizes, conditions
        - Adjust confidence threshold to filter weak detections
        - Use lower temperature values for consistent results
        - Get your API key from [openrouter.ai](https://openrouter.ai/)
        """)
    
    return demo

if __name__ == "__main__":
    print("πŸš€ Starting Object Detection App...")
    demo = create_interface()
    demo.launch(share=False, inbrowser=True)