File size: 9,091 Bytes
a754546
af4ff35
aff6746
4e09a41
af4ff35
89fac21
4e09a41
 
 
 
 
 
 
 
aff6746
820ab2f
af4ff35
820ab2f
af4ff35
820ab2f
af4ff35
aff6746
 
1550706
aff6746
af4ff35
 
 
 
aff6746
 
af4ff35
905ed31
af4ff35
905ed31
af4ff35
89fac21
4e09a41
 
89fac21
4e09a41
 
89fac21
 
905ed31
89fac21
905ed31
 
 
 
89fac21
905ed31
89fac21
 
905ed31
89fac21
905ed31
 
 
89fac21
af4ff35
89fac21
905ed31
 
 
af4ff35
89fac21
 
905ed31
89fac21
905ed31
 
 
89fac21
 
4e09a41
b19598b
01e4e5c
 
 
d41eee2
01e4e5c
 
 
 
 
 
 
d41eee2
 
 
 
 
 
 
 
 
 
 
01e4e5c
 
 
d41eee2
 
 
 
01e4e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d41eee2
 
 
01e4e5c
 
 
1550706
aff6746
 
 
 
 
 
 
 
905ed31
 
 
01e4e5c
aff6746
 
905ed31
 
 
 
 
 
 
01e4e5c
 
aff6746
 
4e09a41
aff6746
 
 
2b32a02
aff6746
 
 
2b32a02
aff6746
 
 
 
 
 
 
 
905ed31
01e4e5c
aff6746
 
 
c155fa9
 
 
aff6746
 
c155fa9
aff6746
 
c155fa9
 
 
aff6746
 
 
 
 
 
 
 
 
 
 
 
af4ff35
 
4e09a41
b19598b
 
af4ff35
 
905ed31
 
af4ff35
 
905ed31
4e09a41
905ed31
4e09a41
905ed31
 
01e4e5c
 
af4ff35
 
01e4e5c
 
 
d41eee2
 
 
01e4e5c
 
af4ff35
aff6746
af4ff35
aff6746
01e4e5c
aff6746
 
 
 
 
01e4e5c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import spaces
import jiwer
import numpy as np
import re
import gradio as gr

def split_into_sentences(text):
    """
    Simple sentence tokenizer using regular expressions.
    Splits text into sentences based on punctuation.
    """
    sentences = re.split(r'(?<=[.!?])\s*', text)
    sentences = [s.strip() for s in sentences if s.strip()]
    return sentences

@spaces.GPU()
def calculate_wer(reference, hypothesis):
    """
    Calculate the Word Error Rate (WER) using jiwer.
    """
    wer = jiwer.wer(reference, hypothesis)
    return wer

@spaces.GPU()
def calculate_cer(reference, hypothesis):
    """
    Calculate the Character Error Rate (CER) using jiwer.
    """
    cer = jiwer.cer(reference, hypothesis)
    return cer

@spaces.GPU()
def calculate_sentence_metrics(reference, hypothesis):
    """
    Calculate WER and CER for each sentence and overall statistics.
    """
    try:
        reference_sentences = split_into_sentences(reference)
        hypothesis_sentences = split_into_sentences(hypothesis)

        if len(reference_sentences) != len(hypothesis_sentences):
            raise ValueError("Reference and hypothesis must contain the same number of sentences")

        sentence_wers = []
        sentence_cers = []
        for ref, hyp in zip(reference_sentences, hypothesis_sentences):
            wer = jiwer.wer(ref, hyp)
            cer = jiwer.cer(ref, hyp)
            sentence_wers.append(wer)
            sentence_cers.append(cer)

        if not sentence_wers or not sentence_cers:
            return {
                "sentence_wers": [],
                "sentence_cers": [],
                "average_wer": 0.0,
                "average_cer": 0.0,
                "std_dev_wer": 0.0,
                "std_dev_cer": 0.0
            }

        average_wer = np.mean(sentence_wers)
        average_cer = np.mean(sentence_cers)
        std_dev_wer = np.std(sentence_wers)
        std_dev_cer = np.std(sentence_cers)

        return {
            "sentence_wers": sentence_wers,
            "sentence_cers": sentence_cers,
            "average_wer": average_wer,
            "average_cer": average_cer,
            "std_dev_wer": std_dev_wer,
            "std_dev_cer": std_dev_cer
        }
    except Exception as e:
        raise e
        
def identify_misaligned_sentences(reference_text, hypothesis_text):
    """
    Identify sentences that don't match between reference and hypothesis.
    Returns a dictionary with misaligned sentence pairs, their indices, and misalignment details.
    """
    reference_sentences = split_into_sentences(reference_text)
    hypothesis_sentences = split_into_sentences(hypothesis_text)

    misaligned = []
    for i, (ref, hyp) in enumerate(zip(reference_sentences, hypothesis_sentences)):
        if ref != hyp:
            # Find the first position where the sentences diverge
            min_len = min(len(ref), len(hyp))
            misalignment_start = 0
            for j in range(min_len):
                if ref[j] != hyp[j]:
                    misalignment_start = j
                    break
            # Prepare the context for display
            context_ref = ref[:misalignment_start] + f"**{ref[misalignment_start:]}**"
            context_hyp = hyp[:misalignment_start] + f"**{hyp[misalignment_start:]}**"

            misaligned.append({
                "index": i+1,
                "reference": ref,
                "hypothesis": hyp,
                "misalignment_start": misalignment_start,
                "context_ref": context_ref,
                "context_hyp": context_hyp
            })

    return misaligned

def format_sentence_metrics(sentence_wers, sentence_cers, average_wer, average_cer, std_dev_wer, std_dev_cer, misaligned_sentences):
    md = "### Sentence-level Metrics\n\n"
    md += "#### Word Error Rate (WER)\n"
    md += f"* Average WER: {average_wer:.2f}\n"
    md += f"* Standard Deviation: {std_dev_wer:.2f}\n\n"
    md += "#### Character Error Rate (CER)\n"
    md += f"* Average CER: {average_cer:.2f}\n"
    md += f"* Standard Deviation: {std_dev_cer:.2f}\n\n"

    md += "### WER for Each Sentence\n\n"
    for i, wer in enumerate(sentence_wers):
        md += f"* Sentence {i+1}: {wer:.2f}\n"

    md += "\n### CER for Each Sentence\n\n"
    for i, cer in enumerate(sentence_cers):
        md += f"* Sentence {i+1}: {cer:.2f}\n"

    if misaligned_sentences:
        md += "\n### Misaligned Sentences\n\n"
        for misaligned in misaligned_sentences:
            md += f"#### Sentence {misaligned['index']}\n"
            md += f"* Reference: {misaligned['context_ref']}\n"
            md += f"* Hypothesis: {misaligned['context_hyp']}\n"
            md += f"* Misalignment starts at position: {misaligned['misalignment_start']}\n\n"

    return md

@spaces.GPU()
def process_files(reference_file, hypothesis_file):
    try:
        with open(reference_file.name, 'r') as f:
            reference_text = f.read()

        with open(hypothesis_file.name, 'r') as f:
            hypothesis_text = f.read()

        overall_wer = calculate_wer(reference_text, hypothesis_text)
        overall_cer = calculate_cer(reference_text, hypothesis_text)
        sentence_metrics = calculate_sentence_metrics(reference_text, hypothesis_text)
        misaligned = identify_misaligned_sentences(reference_text, hypothesis_text)

        return {
            "Overall WER": overall_wer,
            "Overall CER": overall_cer,
            "Sentence WERs": sentence_metrics["sentence_wers"],
            "Sentence CERs": sentence_metrics["sentence_cers"],
            "Average WER": sentence_metrics["average_wer"],
            "Average CER": sentence_metrics["average_cer"],
            "Standard Deviation WER": sentence_metrics["std_dev_wer"],
            "Standard Deviation CER": sentence_metrics["std_dev_cer"],
            "Misaligned Sentences": misaligned
        }
    except Exception as e:
        return {"error": str(e)}

def main():
    with gr.Blocks() as demo:
        gr.Markdown("# ASR Metrics")

        with gr.Row():
            reference_file = gr.File(label="Upload Reference File")
            hypothesis_file = gr.File(label="Upload Model Output File")

        with gr.Row():
            reference_preview = gr.Textbox(label="Reference Preview", lines=3)
            hypothesis_preview = gr.Textbox(label="Hypothesis Preview", lines=3)

        with gr.Row():
            compute_button = gr.Button("Compute Metrics")
            results_output = gr.JSON(label="Results")
            metrics_output = gr.Markdown(label="Sentence Metrics")
            misaligned_output = gr.Markdown(label="Misaligned Sentences")

        # Update previews when files are uploaded
        def update_previews(ref_file, hyp_file):
            ref_text = ""
            hyp_text = ""

            if ref_file:
                with open(ref_file.name, 'r') as f:
                    ref_text = f.read()[:200]  # Show first 200 characters
            if hyp_file:
                with open(hyp_file.name, 'r') as f:
                    hyp_text = f.read()[:200]  # Show first 200 characters

            return ref_text, hyp_text

        reference_file.change(
            fn=update_previews,
            inputs=[reference_file, hypothesis_file],
            outputs=[reference_preview, hypothesis_preview]
        )
        hypothesis_file.change(
            fn=update_previews,
            inputs=[reference_file, hypothesis_file],
            outputs=[reference_preview, hypothesis_preview]
        )

        def process_and_display(ref_file, hyp_file):
            result = process_files(ref_file, hyp_file)
            if "error" in result:
                error_msg = result["error"]
                return {"error": error_msg}, "", "", {"error": error_msg}

            metrics = {
                "Overall WER": result["Overall WER"],
                "Overall CER": result["Overall CER"]
            }

            metrics_md = format_sentence_metrics(
                result["Sentence WERs"],
                result["Sentence CERs"],
                result["Average WER"],
                result["Average CER"],
                result["Standard Deviation WER"],
                result["Standard Deviation CER"],
                result["Misaligned Sentences"]
            )

            misaligned_md = "### Misaligned Sentences\n\n"
            for misaligned in result["Misaligned Sentences"]:
                misaligned_md += f"#### Sentence {misaligned['index']}\n"
                misaligned_md += f"* Reference: {misaligned['context_ref']}\n"
                misaligned_md += f"* Hypothesis: {misaligned['context_hyp']}\n"
                misaligned_md += f"* Misalignment starts at position: {misaligned['misalignment_start']}\n\n"

            return metrics, metrics_md, misaligned_md

        compute_button.click(
            fn=process_and_display,
            inputs=[reference_file, hypothesis_file],
            outputs=[results_output, metrics_output, misaligned_output]
        )

    demo.launch()

if __name__ == "__main__":
    main()