Spaces:
Sleeping
Sleeping
File size: 9,091 Bytes
a754546 af4ff35 aff6746 4e09a41 af4ff35 89fac21 4e09a41 aff6746 820ab2f af4ff35 820ab2f af4ff35 820ab2f af4ff35 aff6746 1550706 aff6746 af4ff35 aff6746 af4ff35 905ed31 af4ff35 905ed31 af4ff35 89fac21 4e09a41 89fac21 4e09a41 89fac21 905ed31 89fac21 905ed31 89fac21 905ed31 89fac21 905ed31 89fac21 905ed31 89fac21 af4ff35 89fac21 905ed31 af4ff35 89fac21 905ed31 89fac21 905ed31 89fac21 4e09a41 b19598b 01e4e5c d41eee2 01e4e5c d41eee2 01e4e5c d41eee2 01e4e5c d41eee2 01e4e5c 1550706 aff6746 905ed31 01e4e5c aff6746 905ed31 01e4e5c aff6746 4e09a41 aff6746 2b32a02 aff6746 2b32a02 aff6746 905ed31 01e4e5c aff6746 c155fa9 aff6746 c155fa9 aff6746 c155fa9 aff6746 af4ff35 4e09a41 b19598b af4ff35 905ed31 af4ff35 905ed31 4e09a41 905ed31 4e09a41 905ed31 01e4e5c af4ff35 01e4e5c d41eee2 01e4e5c af4ff35 aff6746 af4ff35 aff6746 01e4e5c aff6746 01e4e5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import spaces
import jiwer
import numpy as np
import re
import gradio as gr
def split_into_sentences(text):
"""
Simple sentence tokenizer using regular expressions.
Splits text into sentences based on punctuation.
"""
sentences = re.split(r'(?<=[.!?])\s*', text)
sentences = [s.strip() for s in sentences if s.strip()]
return sentences
@spaces.GPU()
def calculate_wer(reference, hypothesis):
"""
Calculate the Word Error Rate (WER) using jiwer.
"""
wer = jiwer.wer(reference, hypothesis)
return wer
@spaces.GPU()
def calculate_cer(reference, hypothesis):
"""
Calculate the Character Error Rate (CER) using jiwer.
"""
cer = jiwer.cer(reference, hypothesis)
return cer
@spaces.GPU()
def calculate_sentence_metrics(reference, hypothesis):
"""
Calculate WER and CER for each sentence and overall statistics.
"""
try:
reference_sentences = split_into_sentences(reference)
hypothesis_sentences = split_into_sentences(hypothesis)
if len(reference_sentences) != len(hypothesis_sentences):
raise ValueError("Reference and hypothesis must contain the same number of sentences")
sentence_wers = []
sentence_cers = []
for ref, hyp in zip(reference_sentences, hypothesis_sentences):
wer = jiwer.wer(ref, hyp)
cer = jiwer.cer(ref, hyp)
sentence_wers.append(wer)
sentence_cers.append(cer)
if not sentence_wers or not sentence_cers:
return {
"sentence_wers": [],
"sentence_cers": [],
"average_wer": 0.0,
"average_cer": 0.0,
"std_dev_wer": 0.0,
"std_dev_cer": 0.0
}
average_wer = np.mean(sentence_wers)
average_cer = np.mean(sentence_cers)
std_dev_wer = np.std(sentence_wers)
std_dev_cer = np.std(sentence_cers)
return {
"sentence_wers": sentence_wers,
"sentence_cers": sentence_cers,
"average_wer": average_wer,
"average_cer": average_cer,
"std_dev_wer": std_dev_wer,
"std_dev_cer": std_dev_cer
}
except Exception as e:
raise e
def identify_misaligned_sentences(reference_text, hypothesis_text):
"""
Identify sentences that don't match between reference and hypothesis.
Returns a dictionary with misaligned sentence pairs, their indices, and misalignment details.
"""
reference_sentences = split_into_sentences(reference_text)
hypothesis_sentences = split_into_sentences(hypothesis_text)
misaligned = []
for i, (ref, hyp) in enumerate(zip(reference_sentences, hypothesis_sentences)):
if ref != hyp:
# Find the first position where the sentences diverge
min_len = min(len(ref), len(hyp))
misalignment_start = 0
for j in range(min_len):
if ref[j] != hyp[j]:
misalignment_start = j
break
# Prepare the context for display
context_ref = ref[:misalignment_start] + f"**{ref[misalignment_start:]}**"
context_hyp = hyp[:misalignment_start] + f"**{hyp[misalignment_start:]}**"
misaligned.append({
"index": i+1,
"reference": ref,
"hypothesis": hyp,
"misalignment_start": misalignment_start,
"context_ref": context_ref,
"context_hyp": context_hyp
})
return misaligned
def format_sentence_metrics(sentence_wers, sentence_cers, average_wer, average_cer, std_dev_wer, std_dev_cer, misaligned_sentences):
md = "### Sentence-level Metrics\n\n"
md += "#### Word Error Rate (WER)\n"
md += f"* Average WER: {average_wer:.2f}\n"
md += f"* Standard Deviation: {std_dev_wer:.2f}\n\n"
md += "#### Character Error Rate (CER)\n"
md += f"* Average CER: {average_cer:.2f}\n"
md += f"* Standard Deviation: {std_dev_cer:.2f}\n\n"
md += "### WER for Each Sentence\n\n"
for i, wer in enumerate(sentence_wers):
md += f"* Sentence {i+1}: {wer:.2f}\n"
md += "\n### CER for Each Sentence\n\n"
for i, cer in enumerate(sentence_cers):
md += f"* Sentence {i+1}: {cer:.2f}\n"
if misaligned_sentences:
md += "\n### Misaligned Sentences\n\n"
for misaligned in misaligned_sentences:
md += f"#### Sentence {misaligned['index']}\n"
md += f"* Reference: {misaligned['context_ref']}\n"
md += f"* Hypothesis: {misaligned['context_hyp']}\n"
md += f"* Misalignment starts at position: {misaligned['misalignment_start']}\n\n"
return md
@spaces.GPU()
def process_files(reference_file, hypothesis_file):
try:
with open(reference_file.name, 'r') as f:
reference_text = f.read()
with open(hypothesis_file.name, 'r') as f:
hypothesis_text = f.read()
overall_wer = calculate_wer(reference_text, hypothesis_text)
overall_cer = calculate_cer(reference_text, hypothesis_text)
sentence_metrics = calculate_sentence_metrics(reference_text, hypothesis_text)
misaligned = identify_misaligned_sentences(reference_text, hypothesis_text)
return {
"Overall WER": overall_wer,
"Overall CER": overall_cer,
"Sentence WERs": sentence_metrics["sentence_wers"],
"Sentence CERs": sentence_metrics["sentence_cers"],
"Average WER": sentence_metrics["average_wer"],
"Average CER": sentence_metrics["average_cer"],
"Standard Deviation WER": sentence_metrics["std_dev_wer"],
"Standard Deviation CER": sentence_metrics["std_dev_cer"],
"Misaligned Sentences": misaligned
}
except Exception as e:
return {"error": str(e)}
def main():
with gr.Blocks() as demo:
gr.Markdown("# ASR Metrics")
with gr.Row():
reference_file = gr.File(label="Upload Reference File")
hypothesis_file = gr.File(label="Upload Model Output File")
with gr.Row():
reference_preview = gr.Textbox(label="Reference Preview", lines=3)
hypothesis_preview = gr.Textbox(label="Hypothesis Preview", lines=3)
with gr.Row():
compute_button = gr.Button("Compute Metrics")
results_output = gr.JSON(label="Results")
metrics_output = gr.Markdown(label="Sentence Metrics")
misaligned_output = gr.Markdown(label="Misaligned Sentences")
# Update previews when files are uploaded
def update_previews(ref_file, hyp_file):
ref_text = ""
hyp_text = ""
if ref_file:
with open(ref_file.name, 'r') as f:
ref_text = f.read()[:200] # Show first 200 characters
if hyp_file:
with open(hyp_file.name, 'r') as f:
hyp_text = f.read()[:200] # Show first 200 characters
return ref_text, hyp_text
reference_file.change(
fn=update_previews,
inputs=[reference_file, hypothesis_file],
outputs=[reference_preview, hypothesis_preview]
)
hypothesis_file.change(
fn=update_previews,
inputs=[reference_file, hypothesis_file],
outputs=[reference_preview, hypothesis_preview]
)
def process_and_display(ref_file, hyp_file):
result = process_files(ref_file, hyp_file)
if "error" in result:
error_msg = result["error"]
return {"error": error_msg}, "", "", {"error": error_msg}
metrics = {
"Overall WER": result["Overall WER"],
"Overall CER": result["Overall CER"]
}
metrics_md = format_sentence_metrics(
result["Sentence WERs"],
result["Sentence CERs"],
result["Average WER"],
result["Average CER"],
result["Standard Deviation WER"],
result["Standard Deviation CER"],
result["Misaligned Sentences"]
)
misaligned_md = "### Misaligned Sentences\n\n"
for misaligned in result["Misaligned Sentences"]:
misaligned_md += f"#### Sentence {misaligned['index']}\n"
misaligned_md += f"* Reference: {misaligned['context_ref']}\n"
misaligned_md += f"* Hypothesis: {misaligned['context_hyp']}\n"
misaligned_md += f"* Misalignment starts at position: {misaligned['misalignment_start']}\n\n"
return metrics, metrics_md, misaligned_md
compute_button.click(
fn=process_and_display,
inputs=[reference_file, hypothesis_file],
outputs=[results_output, metrics_output, misaligned_output]
)
demo.launch()
if __name__ == "__main__":
main() |