File size: 6,716 Bytes
a754546
af4ff35
aff6746
af4ff35
89fac21
 
 
 
 
aff6746
820ab2f
af4ff35
820ab2f
af4ff35
820ab2f
af4ff35
aff6746
 
1550706
aff6746
af4ff35
 
 
 
aff6746
 
af4ff35
 
 
 
 
89fac21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af4ff35
89fac21
 
af4ff35
89fac21
 
 
 
 
 
 
af4ff35
89fac21
 
 
 
 
 
 
af4ff35
 
 
89fac21
 
af4ff35
 
1550706
aff6746
 
 
 
 
 
 
 
89fac21
 
 
 
 
aff6746
 
af4ff35
aff6746
 
 
820ab2f
af4ff35
 
89fac21
 
 
aff6746
 
89fac21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aff6746
af4ff35
89fac21
 
af4ff35
89fac21
af4ff35
 
 
 
 
89fac21
af4ff35
 
aff6746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af4ff35
aff6746
 
 
c155fa9
 
 
aff6746
 
c155fa9
aff6746
 
c155fa9
 
 
aff6746
 
 
 
 
 
 
 
 
 
 
 
af4ff35
 
 
 
 
 
 
 
89fac21
 
 
 
 
 
af4ff35
89fac21
 
 
 
 
af4ff35
 
 
 
aff6746
af4ff35
aff6746
af4ff35
aff6746
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import spaces
import jiwer
import numpy as np
import gradio as gr
import nltk
from nltk.tokenize import sent_tokenize

# Ensure NLTK data is downloaded
nltk.download('punkt')

@spaces.GPU()
def calculate_wer(reference, hypothesis):
    """
    Calculate the Word Error Rate (WER) using jiwer.
    """
    wer = jiwer.wer(reference, hypothesis)
    return wer

@spaces.GPU()
def calculate_cer(reference, hypothesis):
    """
    Calculate the Character Error Rate (CER) using jiwer.
    """
    cer = jiwer.cer(reference, hypothesis)
    return cer

@spaces.GPU()
def calculate_sentence_wer(reference, hypothesis):
    """
    Calculate WER for each sentence and overall statistics.
    """
    try:
        reference_sentences = sent_tokenize(reference)
        hypothesis_sentences = sent_tokenize(hypothesis)

        # Get minimum number of sentences
        min_sentences = min(len(reference_sentences), len(hypothesis_sentences))

        # Trim to the same number of sentences
        reference_sentences = reference_sentences[:min_sentences]
        hypothesis_sentences = hypothesis_sentences[:min_sentences]

        sentence_wers = []
        for ref, hyp in zip(reference_sentences, hypothesis_sentences):
            sentence_wer = jiwer.wer(ref, hyp)
            sentence_wers.append(sentence_wer)

        if not sentence_wers:
            return {
                "sentence_wers": [],
                "average_wer": 0.0,
                "std_dev": 0.0,
                "warning": "No sentences to compare"
            }

        average_wer = np.mean(sentence_wers)
        std_dev = np.std(sentence_wers)

        # Check if there were extra sentences
        if len(reference_sentences) != len(hypothesis_sentences):
            warning = f"Reference has {len(reference_sentences)} sentences, " \
                      f"hypothesis has {len(hypothesis_sentences)} sentences. " \
                      f"Only compared the first {min_sentences} sentences."
        else:
            warning = None

        return {
            "sentence_wers": sentence_wers,
            "average_wer": average_wer,
            "std_dev": std_dev,
            "warning": warning
        }
    except Exception as e:
        return {
            "sentence_wers": [],
            "average_wer": 0.0,
            "std_dev": 0.0,
            "error": str(e)
        }

@spaces.GPU()
def process_files(reference_file, hypothesis_file):
    try:
        with open(reference_file.name, 'r') as f:
            reference_text = f.read()

        with open(hypothesis_file.name, 'r') as f:
            hypothesis_text = f.read()

        if not reference_text or not hypothesis_text:
            return {
                "error": "Both reference and hypothesis files must contain text"
            }

        wer_value = calculate_wer(reference_text, hypothesis_text)
        cer_value = calculate_cer(reference_text, hypothesis_text)
        sentence_wer_stats = calculate_sentence_wer(reference_text, hypothesis_text)

        return {
            "WER": wer_value,
            "CER": cer_value,
            "Sentence WERs": sentence_wer_stats["sentence_wers"],
            "Average WER": sentence_wer_stats["average_wer"],
            "Standard Deviation": sentence_wer_stats["std_dev"],
            "Warning": sentence_wer_stats.get("warning"),
            "Error": sentence_wer_stats.get("error")
        }
    except Exception as e:
        return {
            "WER": 0.0,
            "CER": 0.0,
            "Sentence WERs": [],
            "Average WER": 0.0,
            "Standard Deviation": 0.0,
            "Error": str(e)
        }

def format_sentence_wer_stats(sentence_wers, average_wer, std_dev, warning, error):
    md = ""

    if error:
        md += f"### Error\n{error}\n\n"
    elif warning:
        md += f"### Warning\n{warning}\n\n"

    if not sentence_wers:
        md += "No sentences to compare"
        return md

    md += "### Sentence-level WER Analysis\n\n"
    md += f"* Average WER: {average_wer:.2f}\n"
    md += f"* Standard Deviation: {std_dev:.2f}\n\n"
    md += "### WER for Each Sentence\n\n"
    for i, wer in enumerate(sentence_wers):
        md += f"* Sentence {i+1}: {wer:.2f}\n"

    return md

def main():
    with gr.Blocks() as demo:
        gr.Markdown("# ASR Metrics Calculator")

        with gr.Row():
            reference_file = gr.File(label="Upload Reference File")
            hypothesis_file = gr.File(label="Upload Hypothesis File")

        with gr.Row():
            reference_preview = gr.Textbox(label="Reference Preview", lines=3)
            hypothesis_preview = gr.Textbox(label="Hypothesis Preview", lines=3)

        with gr.Row():
            compute_button = gr.Button("Compute Metrics")
            results_output = gr.JSON(label="Results")
            wer_stats_output = gr.Markdown(label="WER Statistics")

        # Update previews when files are uploaded
        def update_previews(ref_file, hyp_file):
            ref_text = ""
            hyp_text = ""

            if ref_file:
                with open(ref_file.name, 'r') as f:
                    ref_text = f.read()[:200]  # Show first 200 characters
            if hyp_file:
                with open(hyp_file.name, 'r') as f:
                    hyp_text = f.read()[:200]  # Show first 200 characters

            return ref_text, hyp_text

        reference_file.change(
            fn=update_previews,
            inputs=[reference_file, hypothesis_file],
            outputs=[reference_preview, hypothesis_preview]
        )
        hypothesis_file.change(
            fn=update_previews,
            inputs=[reference_file, hypothesis_file],
            outputs=[reference_preview, hypothesis_preview]
        )

        def process_and_display(ref_file, hyp_file):
            result = process_files(ref_file, hyp_file)

            metrics = {
                "WER": result["WER"],
                "CER": result["CER"]
            }

            error = result.get("Error")
            warning = result.get("Warning")
            sentence_wers = result.get("Sentence WERs", [])
            average_wer = result.get("Average WER", 0.0)
            std_dev = result.get("Standard Deviation", 0.0)

            wer_stats_md = format_sentence_wer_stats(
                sentence_wers,
                average_wer,
                std_dev,
                warning,
                error
            )

            return metrics, wer_stats_md

        compute_button.click(
            fn=process_and_display,
            inputs=[reference_file, hypothesis_file],
            outputs=[results_output, wer_stats_output]
        )

    demo.launch()

if __name__ == "__main__":
    main()