Spaces:
Sleeping
Sleeping
File size: 6,716 Bytes
a754546 af4ff35 aff6746 af4ff35 89fac21 aff6746 820ab2f af4ff35 820ab2f af4ff35 820ab2f af4ff35 aff6746 1550706 aff6746 af4ff35 aff6746 af4ff35 89fac21 af4ff35 89fac21 af4ff35 89fac21 af4ff35 89fac21 af4ff35 89fac21 af4ff35 1550706 aff6746 89fac21 aff6746 af4ff35 aff6746 820ab2f af4ff35 89fac21 aff6746 89fac21 aff6746 af4ff35 89fac21 af4ff35 89fac21 af4ff35 89fac21 af4ff35 aff6746 af4ff35 aff6746 c155fa9 aff6746 c155fa9 aff6746 c155fa9 aff6746 af4ff35 89fac21 af4ff35 89fac21 af4ff35 aff6746 af4ff35 aff6746 af4ff35 aff6746 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import spaces
import jiwer
import numpy as np
import gradio as gr
import nltk
from nltk.tokenize import sent_tokenize
# Ensure NLTK data is downloaded
nltk.download('punkt')
@spaces.GPU()
def calculate_wer(reference, hypothesis):
"""
Calculate the Word Error Rate (WER) using jiwer.
"""
wer = jiwer.wer(reference, hypothesis)
return wer
@spaces.GPU()
def calculate_cer(reference, hypothesis):
"""
Calculate the Character Error Rate (CER) using jiwer.
"""
cer = jiwer.cer(reference, hypothesis)
return cer
@spaces.GPU()
def calculate_sentence_wer(reference, hypothesis):
"""
Calculate WER for each sentence and overall statistics.
"""
try:
reference_sentences = sent_tokenize(reference)
hypothesis_sentences = sent_tokenize(hypothesis)
# Get minimum number of sentences
min_sentences = min(len(reference_sentences), len(hypothesis_sentences))
# Trim to the same number of sentences
reference_sentences = reference_sentences[:min_sentences]
hypothesis_sentences = hypothesis_sentences[:min_sentences]
sentence_wers = []
for ref, hyp in zip(reference_sentences, hypothesis_sentences):
sentence_wer = jiwer.wer(ref, hyp)
sentence_wers.append(sentence_wer)
if not sentence_wers:
return {
"sentence_wers": [],
"average_wer": 0.0,
"std_dev": 0.0,
"warning": "No sentences to compare"
}
average_wer = np.mean(sentence_wers)
std_dev = np.std(sentence_wers)
# Check if there were extra sentences
if len(reference_sentences) != len(hypothesis_sentences):
warning = f"Reference has {len(reference_sentences)} sentences, " \
f"hypothesis has {len(hypothesis_sentences)} sentences. " \
f"Only compared the first {min_sentences} sentences."
else:
warning = None
return {
"sentence_wers": sentence_wers,
"average_wer": average_wer,
"std_dev": std_dev,
"warning": warning
}
except Exception as e:
return {
"sentence_wers": [],
"average_wer": 0.0,
"std_dev": 0.0,
"error": str(e)
}
@spaces.GPU()
def process_files(reference_file, hypothesis_file):
try:
with open(reference_file.name, 'r') as f:
reference_text = f.read()
with open(hypothesis_file.name, 'r') as f:
hypothesis_text = f.read()
if not reference_text or not hypothesis_text:
return {
"error": "Both reference and hypothesis files must contain text"
}
wer_value = calculate_wer(reference_text, hypothesis_text)
cer_value = calculate_cer(reference_text, hypothesis_text)
sentence_wer_stats = calculate_sentence_wer(reference_text, hypothesis_text)
return {
"WER": wer_value,
"CER": cer_value,
"Sentence WERs": sentence_wer_stats["sentence_wers"],
"Average WER": sentence_wer_stats["average_wer"],
"Standard Deviation": sentence_wer_stats["std_dev"],
"Warning": sentence_wer_stats.get("warning"),
"Error": sentence_wer_stats.get("error")
}
except Exception as e:
return {
"WER": 0.0,
"CER": 0.0,
"Sentence WERs": [],
"Average WER": 0.0,
"Standard Deviation": 0.0,
"Error": str(e)
}
def format_sentence_wer_stats(sentence_wers, average_wer, std_dev, warning, error):
md = ""
if error:
md += f"### Error\n{error}\n\n"
elif warning:
md += f"### Warning\n{warning}\n\n"
if not sentence_wers:
md += "No sentences to compare"
return md
md += "### Sentence-level WER Analysis\n\n"
md += f"* Average WER: {average_wer:.2f}\n"
md += f"* Standard Deviation: {std_dev:.2f}\n\n"
md += "### WER for Each Sentence\n\n"
for i, wer in enumerate(sentence_wers):
md += f"* Sentence {i+1}: {wer:.2f}\n"
return md
def main():
with gr.Blocks() as demo:
gr.Markdown("# ASR Metrics Calculator")
with gr.Row():
reference_file = gr.File(label="Upload Reference File")
hypothesis_file = gr.File(label="Upload Hypothesis File")
with gr.Row():
reference_preview = gr.Textbox(label="Reference Preview", lines=3)
hypothesis_preview = gr.Textbox(label="Hypothesis Preview", lines=3)
with gr.Row():
compute_button = gr.Button("Compute Metrics")
results_output = gr.JSON(label="Results")
wer_stats_output = gr.Markdown(label="WER Statistics")
# Update previews when files are uploaded
def update_previews(ref_file, hyp_file):
ref_text = ""
hyp_text = ""
if ref_file:
with open(ref_file.name, 'r') as f:
ref_text = f.read()[:200] # Show first 200 characters
if hyp_file:
with open(hyp_file.name, 'r') as f:
hyp_text = f.read()[:200] # Show first 200 characters
return ref_text, hyp_text
reference_file.change(
fn=update_previews,
inputs=[reference_file, hypothesis_file],
outputs=[reference_preview, hypothesis_preview]
)
hypothesis_file.change(
fn=update_previews,
inputs=[reference_file, hypothesis_file],
outputs=[reference_preview, hypothesis_preview]
)
def process_and_display(ref_file, hyp_file):
result = process_files(ref_file, hyp_file)
metrics = {
"WER": result["WER"],
"CER": result["CER"]
}
error = result.get("Error")
warning = result.get("Warning")
sentence_wers = result.get("Sentence WERs", [])
average_wer = result.get("Average WER", 0.0)
std_dev = result.get("Standard Deviation", 0.0)
wer_stats_md = format_sentence_wer_stats(
sentence_wers,
average_wer,
std_dev,
warning,
error
)
return metrics, wer_stats_md
compute_button.click(
fn=process_and_display,
inputs=[reference_file, hypothesis_file],
outputs=[results_output, wer_stats_output]
)
demo.launch()
if __name__ == "__main__":
main()
|