Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,42 +4,54 @@ import time
|
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
from datasets import load_dataset
|
6 |
|
|
|
7 |
MODEL_CONFIGS = {
|
8 |
-
"GigaChat-like":
|
9 |
-
"ChatGPT-like":
|
10 |
-
"DeepSeek-like":
|
11 |
}
|
12 |
|
|
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
|
|
|
15 |
models = {}
|
16 |
-
for label,
|
17 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
18 |
-
model
|
19 |
-
model.to(device)
|
20 |
-
model.eval()
|
21 |
models[label] = (tokenizer, model)
|
22 |
|
23 |
-
#
|
|
|
24 |
load_dataset("ZhenDOS/alpha_bank_data", split="train")
|
25 |
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
def cot_prompt_2(text):
|
30 |
-
return
|
|
|
|
|
|
|
31 |
|
32 |
-
|
|
|
33 |
results = {}
|
34 |
-
for
|
35 |
-
results[
|
36 |
-
for
|
37 |
-
prompt =
|
38 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
39 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
40 |
-
|
|
|
41 |
with torch.no_grad():
|
42 |
-
|
43 |
**inputs,
|
44 |
max_new_tokens=200,
|
45 |
do_sample=True,
|
@@ -47,36 +59,36 @@ def generate_all_responses(question):
|
|
47 |
top_p=0.9,
|
48 |
eos_token_id=tokenizer.eos_token_id
|
49 |
)
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
57 |
}
|
58 |
return results
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
68 |
|
|
|
69 |
demo = gr.Interface(
|
70 |
fn=display_responses,
|
71 |
-
inputs=gr.Textbox(lines=4, label="Введите
|
72 |
-
outputs=gr.Markdown(label="Ответы
|
73 |
-
title="Alpha Bank Assistant — сравнение
|
74 |
-
description="
|
75 |
-
examples=[
|
76 |
-
"Как восстановить доступ в мобильный банк?",
|
77 |
-
"Почему с меня списали комиссию за обслуживание карты?",
|
78 |
-
"Какие условия по потребительскому кредиту?",
|
79 |
-
]
|
80 |
)
|
81 |
|
82 |
if __name__ == "__main__":
|
|
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
from datasets import load_dataset
|
6 |
|
7 |
+
# 1) Публичные русскоязычные модели из RuGPT-3
|
8 |
MODEL_CONFIGS = {
|
9 |
+
"GigaChat-like": "ai-forever/rugpt3large_based_on_gpt2",
|
10 |
+
"ChatGPT-like": "ai-forever/rugpt3medium_based_on_gpt2",
|
11 |
+
"DeepSeek-like": "ai-forever/rugpt3small_based_on_gpt2"
|
12 |
}
|
13 |
|
14 |
+
# 2) Устройство (GPU если есть, иначе CPU)
|
15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
|
17 |
+
# 3) Загрузка моделей и токенизаторов
|
18 |
models = {}
|
19 |
+
for label, repo_id in MODEL_CONFIGS.items():
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
21 |
+
model = AutoModelForCausalLM.from_pretrained(repo_id)
|
22 |
+
model.to(device).eval()
|
|
|
23 |
models[label] = (tokenizer, model)
|
24 |
|
25 |
+
# 4) (По необходимости) загрузка датасета для примеров / дообучения
|
26 |
+
# Если не нужен — можно закомментировать
|
27 |
load_dataset("ZhenDOS/alpha_bank_data", split="train")
|
28 |
|
29 |
+
# 5) CoT-промпты
|
30 |
+
def cot_prompt_1(text: str) -> str:
|
31 |
+
return (
|
32 |
+
f"Клиент задал вопрос: «{text}»\n"
|
33 |
+
"Подумай шаг за шагом и подробно объясни ответ от лица банка."
|
34 |
+
)
|
35 |
|
36 |
+
def cot_prompt_2(text: str) -> str:
|
37 |
+
return (
|
38 |
+
f"Вопрос клиента: «{text}»\n"
|
39 |
+
"Разложи на части, что именно спрашивает клиент, и предложи логичный ответ с пояснениями."
|
40 |
+
)
|
41 |
|
42 |
+
# 6) Генерация ответов и замер времени
|
43 |
+
def generate_all_responses(question: str):
|
44 |
results = {}
|
45 |
+
for name, (tokenizer, model) in models.items():
|
46 |
+
results[name] = {}
|
47 |
+
for idx, prompt_fn in enumerate([cot_prompt_1, cot_prompt_2], start=1):
|
48 |
+
prompt = prompt_fn(question)
|
49 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
50 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
51 |
+
|
52 |
+
start = time.time()
|
53 |
with torch.no_grad():
|
54 |
+
output_ids = model.generate(
|
55 |
**inputs,
|
56 |
max_new_tokens=200,
|
57 |
do_sample=True,
|
|
|
59 |
top_p=0.9,
|
60 |
eos_token_id=tokenizer.eos_token_id
|
61 |
)
|
62 |
+
latency = round(time.time() - start, 2)
|
63 |
+
|
64 |
+
text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
65 |
+
# Убираем повтор промпта
|
66 |
+
if text.startswith(prompt):
|
67 |
+
text = text[len(prompt):].strip()
|
68 |
+
|
69 |
+
results[name][f"CoT-промпт {idx}"] = {
|
70 |
+
"response": text,
|
71 |
+
"time": f"{latency} сек."
|
72 |
}
|
73 |
return results
|
74 |
|
75 |
+
# 7) Оформление Markdown-вывода
|
76 |
+
def display_responses(question: str) -> str:
|
77 |
+
all_res = generate_all_responses(question)
|
78 |
+
md = []
|
79 |
+
for model_name, prompts in all_res.items():
|
80 |
+
md.append(f"## Модель: **{model_name}**")
|
81 |
+
for label, data in prompts.items():
|
82 |
+
md.append(f"**{label}** ({data['time']}):\n> {data['response']}")
|
83 |
+
return "\n\n".join(md)
|
84 |
|
85 |
+
# 8) Интерфейс Gradio
|
86 |
demo = gr.Interface(
|
87 |
fn=display_responses,
|
88 |
+
inputs=gr.Textbox(lines=4, label="Введите вопрос клиента"),
|
89 |
+
outputs=gr.Markdown(label="Ответы трёх моделей"),
|
90 |
+
title="Alpha Bank Assistant — сравнение CoT-моделей",
|
91 |
+
description="Задайте вопрос клиентского обращения и сравните Chain-of-Thought ответы трёх русскоязычных моделей."
|
|
|
|
|
|
|
|
|
|
|
92 |
)
|
93 |
|
94 |
if __name__ == "__main__":
|