Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,144 +1,83 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
3 |
import torch
|
|
|
|
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
model_name = "ai-forever/rugpt3large_based_on_gpt2"
|
11 |
-
"GigaChat-like:" "ai-forever/rugpt3large_based_on_gpt2", # Русская модель большого размера
|
12 |
-
"ChatGPT-like": "tinkoff-ai/ruDialoGPT-medium", # Диалоговая модель для русского языка
|
13 |
-
"DeepSeek-like": "ai-forever/sbert_large_nlu_ru" # Русская модель для понимания текста
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
tokenizers = AutoTokenizer.from_pretrained(model_name)
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
if model_name == "DeepSeek-like":
|
23 |
-
# Для SBERT используем pipeline
|
24 |
-
models[model_name] = pipeline("text-generation", model=model_path)
|
25 |
-
else:
|
26 |
-
tokenizers[model_name] = AutoTokenizer.from_pretrained(model_path)
|
27 |
-
models[model_name] = AutoModelForCausalLM.from_pretrained(model_path)
|
28 |
-
except Exception as e:
|
29 |
-
print(f"Ошибка при загрузке модели {model_name}: {e}")
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
"Анализ проблемы":
|
34 |
-
"Проанализируй клиентское обращение и выдели основную проблему. "
|
35 |
-
"Обращение: {text}\n\nПроблема:",
|
36 |
-
|
37 |
-
"Формирование ответа":
|
38 |
-
"Клиент обратился с проблемой: {problem}\n\n"
|
39 |
-
"Сформируй вежливый и профессиональный ответ, предлагая решение. "
|
40 |
-
"Используй информацию о банковских услугах. Ответ:"
|
41 |
-
}
|
42 |
|
43 |
-
def
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
prompt,
|
53 |
-
max_length=max_length,
|
54 |
-
do_sample=True,
|
55 |
-
temperature=0.7,
|
56 |
-
top_p=0.9
|
57 |
-
)
|
58 |
-
return result[0]['generated_text']
|
59 |
-
else:
|
60 |
-
# Обработка через transformers
|
61 |
-
inputs = tokenizers[model_name](prompt, return_tensors="pt", truncation=True)
|
62 |
-
|
63 |
with torch.no_grad():
|
64 |
-
outputs =
|
65 |
**inputs,
|
66 |
-
max_new_tokens=
|
67 |
do_sample=True,
|
68 |
temperature=0.7,
|
69 |
top_p=0.9,
|
70 |
-
eos_token_id=
|
71 |
)
|
72 |
-
|
73 |
-
response =
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
if prompt_type not in PROMPTS:
|
81 |
-
return "Неверный тип промпта"
|
82 |
-
|
83 |
-
# Получаем случайный пример из датасета, если текст не введен
|
84 |
-
if not text.strip():
|
85 |
-
example = dataset['train'].shuffle().select(range(1))[0]
|
86 |
-
text = example['text']
|
87 |
-
|
88 |
-
prompt = PROMPTS[prompt_type].format(text=text, problem="")
|
89 |
-
|
90 |
-
results = {}
|
91 |
-
for model_name in MODELS.keys():
|
92 |
-
results[model_name] = generate_with_model(prompt, model_name)
|
93 |
-
|
94 |
return results
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
for model_name in MODELS.keys():
|
118 |
-
outputs.append(
|
119 |
-
gr.Textbox(
|
120 |
-
label=f"{model_name}",
|
121 |
-
interactive=False,
|
122 |
-
lines=5
|
123 |
-
)
|
124 |
-
)
|
125 |
-
|
126 |
-
# Примеры из датасета
|
127 |
-
examples = gr.Examples(
|
128 |
-
examples=[x['text'] for x in dataset['train'].select(range(3))],
|
129 |
-
inputs=text_input,
|
130 |
-
label="Примеры из датасета"
|
131 |
-
)
|
132 |
-
|
133 |
-
def process_and_display(text, prompt_type):
|
134 |
-
results = process_complaint(text, prompt_type)
|
135 |
-
return [results.get(model_name, "") for model_name in MODELS.keys()]
|
136 |
-
|
137 |
-
submit_btn.click(
|
138 |
-
fn=process_and_display,
|
139 |
-
inputs=[text_input, prompt_type],
|
140 |
-
outputs=outputs
|
141 |
-
)
|
142 |
|
143 |
if __name__ == "__main__":
|
144 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
+
import time
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
from datasets import load_dataset
|
6 |
|
7 |
+
MODEL_CONFIGS = {
|
8 |
+
"GigaChat-like": "ai-forever/rugpt3large_based_on_gpt2",
|
9 |
+
"ChatGPT-like": "ai-forever/rugpt3medium_based_on_gpt2",
|
10 |
+
"DeepSeek-like": "ai-forever/rugpt3small_based_on_gpt2"
|
11 |
+
}
|
12 |
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
models = {}
|
16 |
+
for label, name in MODEL_CONFIGS.items():
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(name)
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(name)
|
19 |
+
model.to(device)
|
20 |
+
model.eval()
|
21 |
+
models[label] = (tokenizer, model)
|
22 |
|
23 |
+
# Загрузка датасета
|
24 |
+
load_dataset("ZhenDOS/alpha_bank_data", split="train")
|
|
|
25 |
|
26 |
+
def cot_prompt_1(text):
|
27 |
+
return f"Клиент задал вопрос: {text}\nПодумай шаг за шагом и объясни, как бы ты ответил на это обращение от лица банка."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
def cot_prompt_2(text):
|
30 |
+
return f"Вопрос клиента: {text}\nРазложи на части, что именно спрашивает клиент, и предложи логичный ответ с пояснениями."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
def generate_all_responses(question):
|
33 |
+
results = {}
|
34 |
+
for model_name, (tokenizer, model) in models.items():
|
35 |
+
results[model_name] = {}
|
36 |
+
for i, prompt_func in enumerate([cot_prompt_1, cot_prompt_2], start=1):
|
37 |
+
prompt = prompt_func(question)
|
38 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
39 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
40 |
+
start_time = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
with torch.no_grad():
|
42 |
+
outputs = model.generate(
|
43 |
**inputs,
|
44 |
+
max_new_tokens=200,
|
45 |
do_sample=True,
|
46 |
temperature=0.7,
|
47 |
top_p=0.9,
|
48 |
+
eos_token_id=tokenizer.eos_token_id
|
49 |
)
|
50 |
+
end_time = time.time()
|
51 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
52 |
+
response = response.replace(prompt, "").strip()
|
53 |
+
duration = round(end_time - start_time, 2)
|
54 |
+
results[model_name][f"CoT Промпт {i}"] = {
|
55 |
+
"response": response,
|
56 |
+
"time": f"{duration} сек."
|
57 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
return results
|
59 |
|
60 |
+
def display_responses(question):
|
61 |
+
all_responses = generate_all_responses(question)
|
62 |
+
output = ""
|
63 |
+
for model_name, prompts in all_responses.items():
|
64 |
+
output += f"\n### Модель: {model_name}\n"
|
65 |
+
for prompt_label, content in prompts.items():
|
66 |
+
output += f"\n**{prompt_label}** ({content['time']}):\n{content['response']}\n"
|
67 |
+
return output.strip()
|
68 |
+
|
69 |
+
demo = gr.Interface(
|
70 |
+
fn=display_responses,
|
71 |
+
inputs=gr.Textbox(lines=4, label="Введите клиентский вопрос"),
|
72 |
+
outputs=gr.Markdown(label="Ответы от разных моделей"),
|
73 |
+
title="Alpha Bank Assistant — сравнение моделей",
|
74 |
+
description="Сравнение CoT-ответов от GigaChat, ChatGPT и DeepSeek-подобных моделей на обращение клиента.",
|
75 |
+
examples=[
|
76 |
+
"Как восстановить доступ в мобильный банк?",
|
77 |
+
"Почему с меня списали комиссию за обслуживание карты?",
|
78 |
+
"Какие условия по потребительскому кредиту?",
|
79 |
+
]
|
80 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
if __name__ == "__main__":
|
83 |
demo.launch()
|