TextLSRDemo / app.py
SiddharthAK's picture
added indexing for 1-2 documents at a time from cranfield and a viewing feature
b0796be verified
raw
history blame
28.7 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForMaskedLM
import torch
import numpy as np
from tqdm.auto import tqdm
import os
import ir_datasets
import random # Added for random selection
# --- Model Loading (Keep as is) ---
tokenizer_splade = None
model_splade = None
tokenizer_splade_lexical = None
model_splade_lexical = None
tokenizer_splade_doc = None
model_splade_doc = None
# Load SPLADE v3 model (original)
try:
tokenizer_splade = AutoTokenizer.from_pretrained("naver/splade-cocondenser-selfdistil")
model_splade = AutoModelForMaskedLM.from_pretrained("naver/splade-cocondenser-selfdistil")
model_splade.eval()
print("SPLADE-cocondenser-distil model loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE-cocondenser-distil model: {e}")
print("Please ensure you have accepted any user access agreements on the Hugging Face Hub page for 'naver/splade-cocondenser-selfdistil'.")
# Load SPLADE v3 Lexical model
try:
splade_lexical_model_name = "naver/splade-v3-lexical"
tokenizer_splade_lexical = AutoTokenizer.from_pretrained(splade_lexical_model_name)
model_splade_lexical = AutoModelForMaskedLM.from_pretrained(splade_lexical_model_name)
model_splade_lexical.eval()
print(f"SPLADE-v3-Lexical model '{splade_lexical_model_name}' loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE-v3-Lexical model: {e}")
print(f"Please ensure '{splade_lexical_model_name}' is accessible (check Hugging Face Hub for potential agreements).")
# Load SPLADE v3 Doc model
try:
splade_doc_model_name = "naver/splade-v3-doc"
tokenizer_splade_doc = AutoTokenizer.from_pretrained(splade_doc_model_name)
model_splade_doc = AutoModelForMaskedLM.from_pretrained(splade_doc_model_name)
model_splade_doc.eval()
print(f"SPLADE-v3-Doc model '{splade_doc_model_name}' loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE-v3-Doc model: {e}")
print(f"Please ensure '{splade_doc_model_name}' is accessible (check Hugging Face Hub for potential agreements).")
# --- Global Variables for Document Index and Qrels ---
document_representations = {} # Stores {doc_id: sparse_vector}
document_texts = {} # Stores {doc_id: doc_text}
queries_texts = {} # Stores {query_id: query_text}
qrels_data = {} # Stores {query_id: [{doc_id: str, relevance: int}, ...]}
initial_doc_model_for_indexing = "SPLADE-cocondenser-distil" # Fixed for initial demo index
# --- Load Cranfield Corpus, Queries, and Qrels using ir_datasets ---
def load_cranfield_corpus_ir_datasets():
global document_texts, queries_texts, qrels_data
print("Loading Cranfield corpus, queries, and qrels using ir_datasets...")
try:
dataset = ir_datasets.load("cranfield")
# Load documents
for doc in tqdm(dataset.docs_iter(), desc="Loading Cranfield documents"):
document_texts[doc.doc_id] = doc.text.strip()
print(f"Loaded {len(document_texts)} documents from Cranfield corpus.")
# Load queries
for query in tqdm(dataset.queries_iter(), desc="Loading Cranfield queries"):
queries_texts[query.query_id] = query.text.strip()
print(f"Loaded {len(queries_texts)} queries from Cranfield corpus.")
# Load qrels
for qrel in tqdm(dataset.qrels_iter(), desc="Loading Cranfield qrels"):
if qrel.query_id not in qrels_data:
qrels_data[qrel.query_id] = []
qrels_data[qrel.query_id].append({"doc_id": qrel.doc_id, "relevance": qrel.relevance})
print(f"Loaded qrels for {len(qrels_data)} queries.")
except Exception as e:
print(f"Error loading Cranfield corpus with ir_datasets: {e}")
print("Please ensure 'ir_datasets' is installed and your internet connection is stable.")
# --- Helper function for lexical mask (now handles batches) ---
def create_lexical_bow_mask(input_ids_batch, vocab_size, tokenizer):
"""
Creates a batch of lexical BOW masks.
input_ids_batch: torch.Tensor of shape (batch_size, sequence_length)
vocab_size: int, size of the tokenizer vocabulary
tokenizer: the tokenizer object
Returns: torch.Tensor of shape (batch_size, vocab_size)
"""
batch_size = input_ids_batch.shape[0]
bow_masks = torch.zeros(batch_size, vocab_size, device=input_ids_batch.device)
for i in range(batch_size):
input_ids = input_ids_batch[i] # Get input_ids for the current item in the batch
meaningful_token_ids = []
for token_id in input_ids.tolist():
if token_id not in [
tokenizer.pad_token_id,
tokenizer.cls_token_id,
tokenizer.sep_token_id,
tokenizer.mask_token_id,
tokenizer.unk_token_id
]:
meaningful_token_ids.append(token_id)
if meaningful_token_ids:
# Apply mask to the current row in the batch
bow_masks[i, list(set(meaningful_token_ids))] = 1
return bow_masks
# --- Core Representation Functions (Return Formatted Strings - for Explorer Tab) ---
# These functions still take single text input for the Explorer tab
def get_splade_cocondenser_representation(text):
if tokenizer_splade is None or model_splade is None:
return "SPLADE-cocondenser-distil model is not loaded. Please check the console for loading errors."
inputs = tokenizer_splade(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade(**inputs)
if hasattr(output, 'logits'):
splade_vector = torch.max(
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
dim=1
)[0].squeeze() # Squeeze is fine here as it's a single input
else:
return "Model output structure not as expected for SPLADE-cocondenser-distil. 'logits' not found."
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices] if indices else []
values = splade_vector[indices].cpu().tolist()
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)
formatted_output = "SPLADE-cocondenser-distil Representation (Weighting and Expansion):\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
for term, weight in sorted_representation:
formatted_output += f"- **{term}**: {weight:.4f}\n"
formatted_output += "\n--- Raw SPLADE Vector Info ---\n"
formatted_output += f"Total non-zero terms in vector: {len(indices)}\n"
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade.vocab_size):.2%}\n"
return formatted_output
def get_splade_lexical_representation(text):
if tokenizer_splade_lexical is None or model_splade_lexical is None:
return "SPLADE-v3-Lexical model is not loaded. Please check the console for loading errors."
inputs = tokenizer_splade_lexical(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade_lexical.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade_lexical(**inputs)
if hasattr(output, 'logits'):
splade_vector = torch.max(
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
dim=1
)[0].squeeze() # Squeeze is fine here
else:
return "Model output structure not as expected for SPLADE-v3-Lexical. 'logits' not found."
# Always apply lexical mask for this model's specific behavior
vocab_size = tokenizer_splade_lexical.vocab_size
# Call with unsqueezed input_ids for single sample processing
bow_mask = create_lexical_bow_mask(
inputs['input_ids'], vocab_size, tokenizer_splade_lexical
).squeeze() # Squeeze back for single output
splade_vector = splade_vector * bow_mask
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices] if indices else []
values = splade_vector[indices].cpu().tolist()
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade_lexical.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)
formatted_output = "SPLADE-v3-Lexical Representation (Weighting):\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
for term, weight in sorted_representation:
formatted_output += f"- **{term}**: {weight:.4f}\n"
formatted_output += "\n--- Raw SPLADE Vector Info ---\n"
formatted_output += f"Total non-zero terms in vector: {len(indices)}\n"
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_lexical.vocab_size):.2%}\n"
return formatted_output
def get_splade_doc_representation(text):
if tokenizer_splade_doc is None or model_splade_doc is None:
return "SPLADE-v3-Doc model is not loaded. Please check the console for loading errors."
inputs = tokenizer_splade_doc(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade_doc.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade_doc(**inputs)
if not hasattr(output, "logits"):
return "Model output structure not as expected. 'logits' not found."
vocab_size = tokenizer_splade_doc.vocab_size
# Call with unsqueezed input_ids for single sample processing
binary_splade_vector = create_lexical_bow_mask(
inputs['input_ids'], vocab_size, tokenizer_splade_doc
).squeeze() # Squeeze back for single output
indices = torch.nonzero(binary_splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices] if indices else []
values = [1.0] * len(indices) # All values are 1 for binary representation
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade_doc.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[0]) # Sort alphabetically for clarity
formatted_output = "SPLADE-v3-Doc Representation (Binary):\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
for i, (term, _) in enumerate(sorted_representation):
if i >= 50: # Limit display for very long lists
formatted_output += f"...and {len(sorted_representation) - 50} more terms.\n"
break
formatted_output += f"- **{term}**\n"
formatted_output += "\n--- Raw Binary Sparse Vector Info ---\n"
formatted_output += f"Total activated terms: {len(indices)}\n"
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_doc.vocab_size):.2%}\n"
return formatted_output
# --- Unified Prediction Function for the Explorer Tab ---
def predict_representation_explorer(model_choice, text):
if model_choice == "SPLADE-cocondenser-distil (weighting and expansion)":
return get_splade_cocondenser_representation(text)
elif model_choice == "SPLADE-v3-Lexical (weighting)":
return get_splade_lexical_representation(text)
elif model_choice == "SPLADE-v3-Doc (binary)":
return get_splade_doc_representation(text)
else:
return "Please select a model."
# --- Internal Core Representation Functions (now handle batches) ---
def get_splade_cocondenser_representation_internal(texts, tokenizer, model):
"""
Generates SPLADE representations for a batch of texts.
texts: list of strings
tokenizer: the tokenizer object
model: the SPLADE model
Returns: torch.Tensor of shape (batch_size, vocab_size) or None
"""
if tokenizer is None or model is None: return None
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad():
output = model(**inputs)
if hasattr(output, 'logits'):
# torch.max(..., dim=1)[0] reduces along sequence_length dimension,
# resulting in (batch_size, vocab_size)
splade_vectors = torch.max(
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
dim=1
)[0]
return splade_vectors
else:
print("Model output structure not as expected for SPLADE-cocondenser-distil. 'logits' not found.")
return None
def get_splade_lexical_representation_internal(texts, tokenizer, model):
"""
Generates SPLADE-Lexical representations for a batch of texts.
texts: list of strings
tokenizer: the tokenizer object
model: the SPLADE-Lexical model
Returns: torch.Tensor of shape (batch_size, vocab_size) or None
"""
if tokenizer is None or model is None: return None
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad(): output = model(**inputs)
if hasattr(output, 'logits'):
splade_vectors = torch.max(torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1), dim=1)[0]
vocab_size = tokenizer.vocab_size
# create_lexical_bow_mask now returns (batch_size, vocab_size)
bow_masks = create_lexical_bow_mask(inputs['input_ids'], vocab_size, tokenizer)
splade_vectors = splade_vectors * bow_masks # Element-wise multiplication, shapes (batch_size, vocab_size)
return splade_vectors
else:
print("Model output structure not as expected for SPLADE-v3-Lexical. 'logits' not found.")
return None
def get_splade_doc_representation_internal(texts, tokenizer, model):
"""
Generates SPLADE-Doc (binary) representations for a batch of texts.
texts: list of strings
tokenizer: the tokenizer object
model: the SPLADE-Doc model (not directly used for logits, but for device)
Returns: torch.Tensor of shape (batch_size, vocab_size) or None
"""
if tokenizer is None or model is None: return None
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model.device) for k, v in inputs.items()} # Ensure inputs are on the correct device
vocab_size = tokenizer.vocab_size
# create_lexical_bow_mask now returns (batch_size, vocab_size)
binary_splade_vectors = create_lexical_bow_mask(inputs['input_ids'], vocab_size, tokenizer)
return binary_splade_vectors
# --- Document Indexing Function (now uses batching) ---
def index_documents(doc_model_choice):
global document_representations
if document_representations:
print("Documents already indexed. Skipping re-indexing.")
return True
tokenizer_to_use = None
model_to_use = None
representation_func_to_use = None
if doc_model_choice == "SPLADE-cocondenser-distil":
if tokenizer_splade is None or model_splade is None:
print("SPLADE-cocondenser-distil model not loaded for indexing.")
return False
tokenizer_to_use = tokenizer_splade
model_to_use = model_splade
representation_func_to_use = get_splade_cocondenser_representation_internal
elif doc_model_choice == "SPLADE-v3-Lexical":
if tokenizer_splade_lexical is None or model_splade_lexical is None:
print("SPLADE-v3-Lexical model not loaded for indexing.")
return False
tokenizer_to_use = tokenizer_splade_lexical
model_to_use = model_splade_lexical
representation_func_to_use = get_splade_lexical_representation_internal
elif doc_model_choice == "SPLADE-v3-Doc":
if tokenizer_splade_doc is None or model_splade_doc is None:
print("SPLADE-v3-Doc model not loaded for indexing.")
return False
tokenizer_to_use = tokenizer_splade_doc
model_to_use = model_splade_doc
representation_func_to_use = get_splade_doc_representation_internal
else:
print(f"Invalid model choice for document indexing: {doc_model_choice}")
return False
print(f"Indexing documents using {doc_model_choice}...")
doc_ids_list = list(document_texts.keys())
doc_texts_list = list(document_texts.values())
# --- BATCH SIZE FOR INDEXING ---
batch_size = 32 # You can adjust this value based on memory and performance
document_representations = {} # Ensure it's clear we're (re)building the index
# Iterate through documents in batches
for i in tqdm(range(0, len(doc_ids_list), batch_size), desc="Indexing Documents in Batches"):
batch_doc_ids = doc_ids_list[i:i + batch_size]
batch_doc_texts = doc_texts_list[i:i + batch_size]
sparse_vectors_batch = representation_func_to_use(batch_doc_texts, tokenizer_to_use, model_to_use)
if sparse_vectors_batch is not None:
# sparse_vectors_batch will have shape (batch_size, vocab_size)
for j, doc_id in enumerate(batch_doc_ids):
# Store each document's vector
document_representations[doc_id] = sparse_vectors_batch[j].cpu()
else:
print(f"Warning: Failed to get representation for a batch starting with doc_id {batch_doc_ids[0]}")
print(f"Finished indexing {len(document_representations)} documents.")
return True
# --- Retrieval Function (for Retrieval Tab) ---
def retrieve_documents(query_text, query_model_choice, indexed_doc_model_name, top_k=5):
if not document_representations:
return "Document index is not loaded or empty. Please ensure documents are indexed.", []
query_vector = None
query_tokenizer = None
query_model = None
# These internal calls still use single text input for the query
if query_model_choice == "SPLADE-cocondenser-distil (weighting and expansion)":
query_tokenizer = tokenizer_splade
query_model = model_splade
query_vector = get_splade_cocondenser_representation_internal([query_text], query_tokenizer, query_model)
elif query_model_choice == "SPLADE-v3-Lexical (weighting)":
query_tokenizer = tokenizer_splade_lexical
query_model = model_splade_lexical
query_vector = get_splade_lexical_representation_internal([query_text], query_tokenizer, query_model)
elif query_model_choice == "SPLADE-v3-Doc (binary)":
query_tokenizer = tokenizer_splade_doc
query_model = model_splade_doc
query_vector = get_splade_doc_representation_internal([query_text], query_tokenizer, query_model)
else:
return "Invalid query model choice.", []
if query_vector is None:
return "Failed to get query representation. Check console for model loading errors.", []
# Since internal functions now return batches, take the first (and only) item for single query
query_vector = query_vector.squeeze(0).cpu()
scores = {}
for doc_id, doc_vec in document_representations.items():
score = torch.dot(query_vector, doc_vec).item()
scores[doc_id] = score
sorted_scores = sorted(scores.items(), key=lambda item: item[1], reverse=True)
top_results = sorted_scores[:top_k]
formatted_output = f"Retrieval Results for Query: '{query_text}'\n"
formatted_output += f"Using Query Model: **{query_model_choice}**\n"
formatted_output += f"Documents Indexed with: **{indexed_doc_model_name}**\n\n"
if not top_results:
formatted_output += "No documents found or scored.\n"
else:
for i, (doc_id, score) in enumerate(top_results):
doc_text = document_texts.get(doc_id, "Document text not available.")
formatted_output += f"**{i+1}. Document ID: {doc_id}** (Score: {score:.4f})\n"
formatted_output += f"> {doc_text[:300]}...\n\n"
return formatted_output, top_results
# --- Unified Prediction Function for Gradio (for Retrieval Tab) ---
def predict_retrieval_gradio(query_text, query_model_choice, selected_doc_model_display_only):
formatted_output, _ = retrieve_documents(query_text, query_model_choice, initial_doc_model_for_indexing, top_k=5)
return formatted_output
# --- New function to get specific retrieval examples ---
def get_specific_retrieval_examples():
if not queries_texts or not qrels_data or not document_texts:
return "Queries, qrels, or documents not loaded. Please check initial loading."
high_qrel_threshold = 3 # Relevance score of 3 or 4 for Cranfield is generally considered high
low_qrel_threshold = 1 # Relevance score of 0 or 1 for Cranfield is generally considered low
eligible_query_ids = []
for qid, qrels in qrels_data.items():
has_high_qrel = any(item['relevance'] >= high_qrel_threshold for item in qrels)
has_low_qrel = any(item['relevance'] <= low_qrel_threshold for item in qrels)
if has_high_qrel and has_low_qrel:
eligible_query_ids.append(qid)
if not eligible_query_ids:
return "Could not find a query with both high and low relevance documents in the loaded qrels."
# Pick a random eligible query
random_query_id = random.choice(eligible_query_ids)
full_query_text = queries_texts.get(random_query_id, "Query text not found.")
query_snippet = full_query_text[:300] + "..." if len(full_query_text) > 300 else full_query_text
qrels_for_query = qrels_data[random_query_id]
high_qrel_docs = [item for item in qrels_for_query if item['relevance'] >= high_qrel_threshold]
low_qrel_docs = [item for item in qrels_for_query if item['relevance'] <= low_qrel_threshold]
selected_high_doc_id = random.choice(high_qrel_docs)['doc_id'] if high_qrel_docs else None
selected_low_doc_id = random.choice(low_qrel_docs)['doc_id'] if low_qrel_docs else None
output_str = f"### Random Query Example\n\n"
output_str += f"**Query ID:** {random_query_id}\n"
output_str += f"**Query Snippet:** {query_snippet}\n\n" # Changed to snippet
if selected_high_doc_id:
full_doc_text = document_texts.get(selected_high_doc_id, "Document text not available.")
doc_snippet = full_doc_text[:500] + "..." if len(full_doc_text) > 500 else full_doc_text
output_str += f"### Highly Relevant Document (Qrel >= {high_qrel_threshold})\n"
output_str += f"**Document ID:** {selected_high_doc_id}\n"
output_str += f"**Document Snippet:** {doc_snippet}\n\n" # Changed to snippet
else:
output_str += "No highly relevant document found for this query.\n\n"
if selected_low_doc_id:
full_doc_text = document_texts.get(selected_low_doc_id, "Document text not available.")
doc_snippet = full_doc_text[:500] + "..." if len(full_doc_text) > 500 else full_doc_text
output_str += f"### Lowly Relevant Document (Qrel <= {low_qrel_threshold})\n"
output_str += f"**Document ID:** {selected_low_doc_id}\n"
output_str += f"**Document Snippet:** {doc_snippet}\n\n" # Changed to snippet
else:
output_str += "No lowly relevant document found for this query.\n\n"
return output_str
# --- Initial Load and Indexing Calls ---
# This part runs once when the app starts.
load_cranfield_corpus_ir_datasets()
if initial_doc_model_for_indexing == "SPLADE-cocondenser-distil" and model_splade is not None:
index_documents(initial_doc_model_for_indexing)
elif initial_doc_model_for_indexing == "SPLADE-v3-Lexical" and model_splade_lexical is not None:
index_documents(initial_doc_model_for_indexing)
elif initial_doc_model_for_indexing == "SPLADE-v3-Doc" and model_splade_doc is not None:
index_documents(initial_doc_model_for_indexing)
else:
print(f"Skipping document indexing: Model '{initial_doc_model_for_indexing}' failed to load or is not a valid choice for indexing.")
# --- Gradio Interface Setup with Tabs ---
with gr.Blocks(title="SPLADE Demos") as demo:
gr.Markdown("# 🌌 SPLADE Demos: Sparse Representation Explorer & Document Retrieval")
gr.Markdown("Explore different SPLADE models and their sparse representation types, or perform document retrieval on a test collection.")
with gr.Tabs():
with gr.TabItem("Sparse Representation Explorer"):
gr.Markdown("### Explore Raw SPLADE Representations for Any Text")
gr.Interface(
fn=predict_representation_explorer,
inputs=[
gr.Radio(
[
"SPLADE-cocondenser-distil (weighting and expansion)",
"SPLADE-v3-Lexical (weighting)",
"SPLADE-v3-Doc (binary)"
],
label="Choose Representation Model",
value="SPLADE-cocondenser-distil (weighting and expansion)"
),
gr.Textbox(
lines=5,
label="Enter your query or document text here:",
placeholder="e.g., Why is Padua the nicest city in Italy?"
)
],
outputs=gr.Markdown(),
allow_flagging="never",
# live=True # Setting live=True might be slow for complex models on every keystroke
)
with gr.TabItem("Document Retrieval Demo"):
gr.Markdown("### Retrieve Documents from Cranfield Collection")
gr.Interface(
fn=predict_retrieval_gradio,
inputs=[
gr.Textbox(
lines=3,
label="Enter your query text here:",
placeholder="e.g., Does high-dose vitamin C cure cancer?"
),
gr.Radio(
[
"SPLADE-cocondenser-distil (weighting and expansion)",
"SPLADE-v3-Lexical (weighting)",
"SPLADE-v3-Doc (binary)"
],
label="Choose Query Representation Model",
value="SPLADE-cocondenser-distil (weighting and expansion)"
),
gr.Radio(
[
"SPLADE-cocondenser-distil",
"SPLADE-v3-Lexical",
"SPLADE-v3-Doc"
],
label=f"Document Index Model (Pre-indexed with: {initial_doc_model_for_indexing})",
value=initial_doc_model_for_indexing,
interactive=False # This radio is fixed for simplicity
)
],
outputs=gr.Markdown(),
allow_flagging="never",
# live=True # retrieval is too heavy for live
)
gr.Markdown("---") # Separator
gr.Markdown("### Get Specific Retrieval Examples")
specific_example_output = gr.Markdown()
specific_example_button = gr.Button("Get Random Query with High/Low Qrel Docs")
specific_example_button.click(
fn=get_specific_retrieval_examples,
inputs=[],
outputs=specific_example_output
)
demo.launch()