Spaces:
Running
Running
File size: 28,660 Bytes
a4de739 01b1a90 3035463 01b1a90 b0796be a4de739 01b1a90 da3acda ab88097 6024481 da3acda ab88097 da3acda 01b1a90 6024481 da3acda 6024481 da3acda ab88097 3035463 ab88097 01b1a90 6024481 3035463 6024481 ab88097 da3acda 6024481 4a365e4 01b1a90 6024481 4a365e4 6024481 4a365e4 b0796be 01b1a90 b0796be 01b1a90 b0796be 44519b1 b0796be 01b1a90 44519b1 b0796be 44519b1 01b1a90 44519b1 b0796be 01b1a90 44519b1 01b1a90 b0796be 01b1a90 b0796be 7c4de94 da3acda 01b1a90 b0796be 6024481 da3acda 6024481 3035463 da3acda 3035463 da3acda 3035463 45b666a b0796be 3035463 6024481 3035463 01b1a90 45b666a 3035463 da3acda 3035463 6024481 3035463 45b666a 3035463 45b666a 3035463 da3acda 4a365e4 ab88097 6024481 45b666a ab88097 da3acda ab88097 22a278f ab88097 b0796be ab88097 6024481 22a278f 6024481 17afa62 b0796be 17afa62 b0796be 17afa62 7c4de94 ab88097 01b1a90 22a278f ab88097 22a278f ab88097 22a278f ab88097 22a278f ab88097 22a278f 6024481 ab88097 22a278f ab88097 22a278f ab88097 3035463 da3acda f4c84bc 4a365e4 6024481 4a365e4 f4c84bc b0796be f4c84bc b0796be 01b1a90 f4c84bc b0796be f4c84bc 6024481 01b1a90 6024481 4a365e4 6024481 4a365e4 6024481 4a365e4 f4c84bc 6024481 f4c84bc 4a365e4 01b1a90 6024481 4a365e4 6024481 01b1a90 da3acda 01b1a90 b0796be 01b1a90 b0796be 01b1a90 b0796be 01b1a90 b0796be 01b1a90 b0796be 01b1a90 b0796be 01b1a90 b0796be 01b1a90 b0796be 01b1a90 b0796be 01b1a90 b0796be 01b1a90 b0796be 01b1a90 b0796be 01b1a90 b0796be 01b1a90 b0796be 01b1a90 b0796be 01b1a90 b0796be 01b1a90 b0796be 01b1a90 b0796be 01b1a90 b0796be 01b1a90 b0796be 01b1a90 b0796be 01b1a90 44519b1 01b1a90 44519b1 01b1a90 b0796be 01b1a90 b0796be 01b1a90 b0796be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForMaskedLM
import torch
import numpy as np
from tqdm.auto import tqdm
import os
import ir_datasets
import random # Added for random selection
# --- Model Loading (Keep as is) ---
tokenizer_splade = None
model_splade = None
tokenizer_splade_lexical = None
model_splade_lexical = None
tokenizer_splade_doc = None
model_splade_doc = None
# Load SPLADE v3 model (original)
try:
tokenizer_splade = AutoTokenizer.from_pretrained("naver/splade-cocondenser-selfdistil")
model_splade = AutoModelForMaskedLM.from_pretrained("naver/splade-cocondenser-selfdistil")
model_splade.eval()
print("SPLADE-cocondenser-distil model loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE-cocondenser-distil model: {e}")
print("Please ensure you have accepted any user access agreements on the Hugging Face Hub page for 'naver/splade-cocondenser-selfdistil'.")
# Load SPLADE v3 Lexical model
try:
splade_lexical_model_name = "naver/splade-v3-lexical"
tokenizer_splade_lexical = AutoTokenizer.from_pretrained(splade_lexical_model_name)
model_splade_lexical = AutoModelForMaskedLM.from_pretrained(splade_lexical_model_name)
model_splade_lexical.eval()
print(f"SPLADE-v3-Lexical model '{splade_lexical_model_name}' loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE-v3-Lexical model: {e}")
print(f"Please ensure '{splade_lexical_model_name}' is accessible (check Hugging Face Hub for potential agreements).")
# Load SPLADE v3 Doc model
try:
splade_doc_model_name = "naver/splade-v3-doc"
tokenizer_splade_doc = AutoTokenizer.from_pretrained(splade_doc_model_name)
model_splade_doc = AutoModelForMaskedLM.from_pretrained(splade_doc_model_name)
model_splade_doc.eval()
print(f"SPLADE-v3-Doc model '{splade_doc_model_name}' loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE-v3-Doc model: {e}")
print(f"Please ensure '{splade_doc_model_name}' is accessible (check Hugging Face Hub for potential agreements).")
# --- Global Variables for Document Index and Qrels ---
document_representations = {} # Stores {doc_id: sparse_vector}
document_texts = {} # Stores {doc_id: doc_text}
queries_texts = {} # Stores {query_id: query_text}
qrels_data = {} # Stores {query_id: [{doc_id: str, relevance: int}, ...]}
initial_doc_model_for_indexing = "SPLADE-cocondenser-distil" # Fixed for initial demo index
# --- Load Cranfield Corpus, Queries, and Qrels using ir_datasets ---
def load_cranfield_corpus_ir_datasets():
global document_texts, queries_texts, qrels_data
print("Loading Cranfield corpus, queries, and qrels using ir_datasets...")
try:
dataset = ir_datasets.load("cranfield")
# Load documents
for doc in tqdm(dataset.docs_iter(), desc="Loading Cranfield documents"):
document_texts[doc.doc_id] = doc.text.strip()
print(f"Loaded {len(document_texts)} documents from Cranfield corpus.")
# Load queries
for query in tqdm(dataset.queries_iter(), desc="Loading Cranfield queries"):
queries_texts[query.query_id] = query.text.strip()
print(f"Loaded {len(queries_texts)} queries from Cranfield corpus.")
# Load qrels
for qrel in tqdm(dataset.qrels_iter(), desc="Loading Cranfield qrels"):
if qrel.query_id not in qrels_data:
qrels_data[qrel.query_id] = []
qrels_data[qrel.query_id].append({"doc_id": qrel.doc_id, "relevance": qrel.relevance})
print(f"Loaded qrels for {len(qrels_data)} queries.")
except Exception as e:
print(f"Error loading Cranfield corpus with ir_datasets: {e}")
print("Please ensure 'ir_datasets' is installed and your internet connection is stable.")
# --- Helper function for lexical mask (now handles batches) ---
def create_lexical_bow_mask(input_ids_batch, vocab_size, tokenizer):
"""
Creates a batch of lexical BOW masks.
input_ids_batch: torch.Tensor of shape (batch_size, sequence_length)
vocab_size: int, size of the tokenizer vocabulary
tokenizer: the tokenizer object
Returns: torch.Tensor of shape (batch_size, vocab_size)
"""
batch_size = input_ids_batch.shape[0]
bow_masks = torch.zeros(batch_size, vocab_size, device=input_ids_batch.device)
for i in range(batch_size):
input_ids = input_ids_batch[i] # Get input_ids for the current item in the batch
meaningful_token_ids = []
for token_id in input_ids.tolist():
if token_id not in [
tokenizer.pad_token_id,
tokenizer.cls_token_id,
tokenizer.sep_token_id,
tokenizer.mask_token_id,
tokenizer.unk_token_id
]:
meaningful_token_ids.append(token_id)
if meaningful_token_ids:
# Apply mask to the current row in the batch
bow_masks[i, list(set(meaningful_token_ids))] = 1
return bow_masks
# --- Core Representation Functions (Return Formatted Strings - for Explorer Tab) ---
# These functions still take single text input for the Explorer tab
def get_splade_cocondenser_representation(text):
if tokenizer_splade is None or model_splade is None:
return "SPLADE-cocondenser-distil model is not loaded. Please check the console for loading errors."
inputs = tokenizer_splade(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade(**inputs)
if hasattr(output, 'logits'):
splade_vector = torch.max(
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
dim=1
)[0].squeeze() # Squeeze is fine here as it's a single input
else:
return "Model output structure not as expected for SPLADE-cocondenser-distil. 'logits' not found."
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices] if indices else []
values = splade_vector[indices].cpu().tolist()
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)
formatted_output = "SPLADE-cocondenser-distil Representation (Weighting and Expansion):\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
for term, weight in sorted_representation:
formatted_output += f"- **{term}**: {weight:.4f}\n"
formatted_output += "\n--- Raw SPLADE Vector Info ---\n"
formatted_output += f"Total non-zero terms in vector: {len(indices)}\n"
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade.vocab_size):.2%}\n"
return formatted_output
def get_splade_lexical_representation(text):
if tokenizer_splade_lexical is None or model_splade_lexical is None:
return "SPLADE-v3-Lexical model is not loaded. Please check the console for loading errors."
inputs = tokenizer_splade_lexical(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade_lexical.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade_lexical(**inputs)
if hasattr(output, 'logits'):
splade_vector = torch.max(
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
dim=1
)[0].squeeze() # Squeeze is fine here
else:
return "Model output structure not as expected for SPLADE-v3-Lexical. 'logits' not found."
# Always apply lexical mask for this model's specific behavior
vocab_size = tokenizer_splade_lexical.vocab_size
# Call with unsqueezed input_ids for single sample processing
bow_mask = create_lexical_bow_mask(
inputs['input_ids'], vocab_size, tokenizer_splade_lexical
).squeeze() # Squeeze back for single output
splade_vector = splade_vector * bow_mask
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices] if indices else []
values = splade_vector[indices].cpu().tolist()
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade_lexical.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)
formatted_output = "SPLADE-v3-Lexical Representation (Weighting):\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
for term, weight in sorted_representation:
formatted_output += f"- **{term}**: {weight:.4f}\n"
formatted_output += "\n--- Raw SPLADE Vector Info ---\n"
formatted_output += f"Total non-zero terms in vector: {len(indices)}\n"
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_lexical.vocab_size):.2%}\n"
return formatted_output
def get_splade_doc_representation(text):
if tokenizer_splade_doc is None or model_splade_doc is None:
return "SPLADE-v3-Doc model is not loaded. Please check the console for loading errors."
inputs = tokenizer_splade_doc(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade_doc.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade_doc(**inputs)
if not hasattr(output, "logits"):
return "Model output structure not as expected. 'logits' not found."
vocab_size = tokenizer_splade_doc.vocab_size
# Call with unsqueezed input_ids for single sample processing
binary_splade_vector = create_lexical_bow_mask(
inputs['input_ids'], vocab_size, tokenizer_splade_doc
).squeeze() # Squeeze back for single output
indices = torch.nonzero(binary_splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices] if indices else []
values = [1.0] * len(indices) # All values are 1 for binary representation
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade_doc.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[0]) # Sort alphabetically for clarity
formatted_output = "SPLADE-v3-Doc Representation (Binary):\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
for i, (term, _) in enumerate(sorted_representation):
if i >= 50: # Limit display for very long lists
formatted_output += f"...and {len(sorted_representation) - 50} more terms.\n"
break
formatted_output += f"- **{term}**\n"
formatted_output += "\n--- Raw Binary Sparse Vector Info ---\n"
formatted_output += f"Total activated terms: {len(indices)}\n"
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_doc.vocab_size):.2%}\n"
return formatted_output
# --- Unified Prediction Function for the Explorer Tab ---
def predict_representation_explorer(model_choice, text):
if model_choice == "SPLADE-cocondenser-distil (weighting and expansion)":
return get_splade_cocondenser_representation(text)
elif model_choice == "SPLADE-v3-Lexical (weighting)":
return get_splade_lexical_representation(text)
elif model_choice == "SPLADE-v3-Doc (binary)":
return get_splade_doc_representation(text)
else:
return "Please select a model."
# --- Internal Core Representation Functions (now handle batches) ---
def get_splade_cocondenser_representation_internal(texts, tokenizer, model):
"""
Generates SPLADE representations for a batch of texts.
texts: list of strings
tokenizer: the tokenizer object
model: the SPLADE model
Returns: torch.Tensor of shape (batch_size, vocab_size) or None
"""
if tokenizer is None or model is None: return None
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad():
output = model(**inputs)
if hasattr(output, 'logits'):
# torch.max(..., dim=1)[0] reduces along sequence_length dimension,
# resulting in (batch_size, vocab_size)
splade_vectors = torch.max(
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
dim=1
)[0]
return splade_vectors
else:
print("Model output structure not as expected for SPLADE-cocondenser-distil. 'logits' not found.")
return None
def get_splade_lexical_representation_internal(texts, tokenizer, model):
"""
Generates SPLADE-Lexical representations for a batch of texts.
texts: list of strings
tokenizer: the tokenizer object
model: the SPLADE-Lexical model
Returns: torch.Tensor of shape (batch_size, vocab_size) or None
"""
if tokenizer is None or model is None: return None
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad(): output = model(**inputs)
if hasattr(output, 'logits'):
splade_vectors = torch.max(torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1), dim=1)[0]
vocab_size = tokenizer.vocab_size
# create_lexical_bow_mask now returns (batch_size, vocab_size)
bow_masks = create_lexical_bow_mask(inputs['input_ids'], vocab_size, tokenizer)
splade_vectors = splade_vectors * bow_masks # Element-wise multiplication, shapes (batch_size, vocab_size)
return splade_vectors
else:
print("Model output structure not as expected for SPLADE-v3-Lexical. 'logits' not found.")
return None
def get_splade_doc_representation_internal(texts, tokenizer, model):
"""
Generates SPLADE-Doc (binary) representations for a batch of texts.
texts: list of strings
tokenizer: the tokenizer object
model: the SPLADE-Doc model (not directly used for logits, but for device)
Returns: torch.Tensor of shape (batch_size, vocab_size) or None
"""
if tokenizer is None or model is None: return None
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model.device) for k, v in inputs.items()} # Ensure inputs are on the correct device
vocab_size = tokenizer.vocab_size
# create_lexical_bow_mask now returns (batch_size, vocab_size)
binary_splade_vectors = create_lexical_bow_mask(inputs['input_ids'], vocab_size, tokenizer)
return binary_splade_vectors
# --- Document Indexing Function (now uses batching) ---
def index_documents(doc_model_choice):
global document_representations
if document_representations:
print("Documents already indexed. Skipping re-indexing.")
return True
tokenizer_to_use = None
model_to_use = None
representation_func_to_use = None
if doc_model_choice == "SPLADE-cocondenser-distil":
if tokenizer_splade is None or model_splade is None:
print("SPLADE-cocondenser-distil model not loaded for indexing.")
return False
tokenizer_to_use = tokenizer_splade
model_to_use = model_splade
representation_func_to_use = get_splade_cocondenser_representation_internal
elif doc_model_choice == "SPLADE-v3-Lexical":
if tokenizer_splade_lexical is None or model_splade_lexical is None:
print("SPLADE-v3-Lexical model not loaded for indexing.")
return False
tokenizer_to_use = tokenizer_splade_lexical
model_to_use = model_splade_lexical
representation_func_to_use = get_splade_lexical_representation_internal
elif doc_model_choice == "SPLADE-v3-Doc":
if tokenizer_splade_doc is None or model_splade_doc is None:
print("SPLADE-v3-Doc model not loaded for indexing.")
return False
tokenizer_to_use = tokenizer_splade_doc
model_to_use = model_splade_doc
representation_func_to_use = get_splade_doc_representation_internal
else:
print(f"Invalid model choice for document indexing: {doc_model_choice}")
return False
print(f"Indexing documents using {doc_model_choice}...")
doc_ids_list = list(document_texts.keys())
doc_texts_list = list(document_texts.values())
# --- BATCH SIZE FOR INDEXING ---
batch_size = 32 # You can adjust this value based on memory and performance
document_representations = {} # Ensure it's clear we're (re)building the index
# Iterate through documents in batches
for i in tqdm(range(0, len(doc_ids_list), batch_size), desc="Indexing Documents in Batches"):
batch_doc_ids = doc_ids_list[i:i + batch_size]
batch_doc_texts = doc_texts_list[i:i + batch_size]
sparse_vectors_batch = representation_func_to_use(batch_doc_texts, tokenizer_to_use, model_to_use)
if sparse_vectors_batch is not None:
# sparse_vectors_batch will have shape (batch_size, vocab_size)
for j, doc_id in enumerate(batch_doc_ids):
# Store each document's vector
document_representations[doc_id] = sparse_vectors_batch[j].cpu()
else:
print(f"Warning: Failed to get representation for a batch starting with doc_id {batch_doc_ids[0]}")
print(f"Finished indexing {len(document_representations)} documents.")
return True
# --- Retrieval Function (for Retrieval Tab) ---
def retrieve_documents(query_text, query_model_choice, indexed_doc_model_name, top_k=5):
if not document_representations:
return "Document index is not loaded or empty. Please ensure documents are indexed.", []
query_vector = None
query_tokenizer = None
query_model = None
# These internal calls still use single text input for the query
if query_model_choice == "SPLADE-cocondenser-distil (weighting and expansion)":
query_tokenizer = tokenizer_splade
query_model = model_splade
query_vector = get_splade_cocondenser_representation_internal([query_text], query_tokenizer, query_model)
elif query_model_choice == "SPLADE-v3-Lexical (weighting)":
query_tokenizer = tokenizer_splade_lexical
query_model = model_splade_lexical
query_vector = get_splade_lexical_representation_internal([query_text], query_tokenizer, query_model)
elif query_model_choice == "SPLADE-v3-Doc (binary)":
query_tokenizer = tokenizer_splade_doc
query_model = model_splade_doc
query_vector = get_splade_doc_representation_internal([query_text], query_tokenizer, query_model)
else:
return "Invalid query model choice.", []
if query_vector is None:
return "Failed to get query representation. Check console for model loading errors.", []
# Since internal functions now return batches, take the first (and only) item for single query
query_vector = query_vector.squeeze(0).cpu()
scores = {}
for doc_id, doc_vec in document_representations.items():
score = torch.dot(query_vector, doc_vec).item()
scores[doc_id] = score
sorted_scores = sorted(scores.items(), key=lambda item: item[1], reverse=True)
top_results = sorted_scores[:top_k]
formatted_output = f"Retrieval Results for Query: '{query_text}'\n"
formatted_output += f"Using Query Model: **{query_model_choice}**\n"
formatted_output += f"Documents Indexed with: **{indexed_doc_model_name}**\n\n"
if not top_results:
formatted_output += "No documents found or scored.\n"
else:
for i, (doc_id, score) in enumerate(top_results):
doc_text = document_texts.get(doc_id, "Document text not available.")
formatted_output += f"**{i+1}. Document ID: {doc_id}** (Score: {score:.4f})\n"
formatted_output += f"> {doc_text[:300]}...\n\n"
return formatted_output, top_results
# --- Unified Prediction Function for Gradio (for Retrieval Tab) ---
def predict_retrieval_gradio(query_text, query_model_choice, selected_doc_model_display_only):
formatted_output, _ = retrieve_documents(query_text, query_model_choice, initial_doc_model_for_indexing, top_k=5)
return formatted_output
# --- New function to get specific retrieval examples ---
def get_specific_retrieval_examples():
if not queries_texts or not qrels_data or not document_texts:
return "Queries, qrels, or documents not loaded. Please check initial loading."
high_qrel_threshold = 3 # Relevance score of 3 or 4 for Cranfield is generally considered high
low_qrel_threshold = 1 # Relevance score of 0 or 1 for Cranfield is generally considered low
eligible_query_ids = []
for qid, qrels in qrels_data.items():
has_high_qrel = any(item['relevance'] >= high_qrel_threshold for item in qrels)
has_low_qrel = any(item['relevance'] <= low_qrel_threshold for item in qrels)
if has_high_qrel and has_low_qrel:
eligible_query_ids.append(qid)
if not eligible_query_ids:
return "Could not find a query with both high and low relevance documents in the loaded qrels."
# Pick a random eligible query
random_query_id = random.choice(eligible_query_ids)
full_query_text = queries_texts.get(random_query_id, "Query text not found.")
query_snippet = full_query_text[:300] + "..." if len(full_query_text) > 300 else full_query_text
qrels_for_query = qrels_data[random_query_id]
high_qrel_docs = [item for item in qrels_for_query if item['relevance'] >= high_qrel_threshold]
low_qrel_docs = [item for item in qrels_for_query if item['relevance'] <= low_qrel_threshold]
selected_high_doc_id = random.choice(high_qrel_docs)['doc_id'] if high_qrel_docs else None
selected_low_doc_id = random.choice(low_qrel_docs)['doc_id'] if low_qrel_docs else None
output_str = f"### Random Query Example\n\n"
output_str += f"**Query ID:** {random_query_id}\n"
output_str += f"**Query Snippet:** {query_snippet}\n\n" # Changed to snippet
if selected_high_doc_id:
full_doc_text = document_texts.get(selected_high_doc_id, "Document text not available.")
doc_snippet = full_doc_text[:500] + "..." if len(full_doc_text) > 500 else full_doc_text
output_str += f"### Highly Relevant Document (Qrel >= {high_qrel_threshold})\n"
output_str += f"**Document ID:** {selected_high_doc_id}\n"
output_str += f"**Document Snippet:** {doc_snippet}\n\n" # Changed to snippet
else:
output_str += "No highly relevant document found for this query.\n\n"
if selected_low_doc_id:
full_doc_text = document_texts.get(selected_low_doc_id, "Document text not available.")
doc_snippet = full_doc_text[:500] + "..." if len(full_doc_text) > 500 else full_doc_text
output_str += f"### Lowly Relevant Document (Qrel <= {low_qrel_threshold})\n"
output_str += f"**Document ID:** {selected_low_doc_id}\n"
output_str += f"**Document Snippet:** {doc_snippet}\n\n" # Changed to snippet
else:
output_str += "No lowly relevant document found for this query.\n\n"
return output_str
# --- Initial Load and Indexing Calls ---
# This part runs once when the app starts.
load_cranfield_corpus_ir_datasets()
if initial_doc_model_for_indexing == "SPLADE-cocondenser-distil" and model_splade is not None:
index_documents(initial_doc_model_for_indexing)
elif initial_doc_model_for_indexing == "SPLADE-v3-Lexical" and model_splade_lexical is not None:
index_documents(initial_doc_model_for_indexing)
elif initial_doc_model_for_indexing == "SPLADE-v3-Doc" and model_splade_doc is not None:
index_documents(initial_doc_model_for_indexing)
else:
print(f"Skipping document indexing: Model '{initial_doc_model_for_indexing}' failed to load or is not a valid choice for indexing.")
# --- Gradio Interface Setup with Tabs ---
with gr.Blocks(title="SPLADE Demos") as demo:
gr.Markdown("# 🌌 SPLADE Demos: Sparse Representation Explorer & Document Retrieval")
gr.Markdown("Explore different SPLADE models and their sparse representation types, or perform document retrieval on a test collection.")
with gr.Tabs():
with gr.TabItem("Sparse Representation Explorer"):
gr.Markdown("### Explore Raw SPLADE Representations for Any Text")
gr.Interface(
fn=predict_representation_explorer,
inputs=[
gr.Radio(
[
"SPLADE-cocondenser-distil (weighting and expansion)",
"SPLADE-v3-Lexical (weighting)",
"SPLADE-v3-Doc (binary)"
],
label="Choose Representation Model",
value="SPLADE-cocondenser-distil (weighting and expansion)"
),
gr.Textbox(
lines=5,
label="Enter your query or document text here:",
placeholder="e.g., Why is Padua the nicest city in Italy?"
)
],
outputs=gr.Markdown(),
allow_flagging="never",
# live=True # Setting live=True might be slow for complex models on every keystroke
)
with gr.TabItem("Document Retrieval Demo"):
gr.Markdown("### Retrieve Documents from Cranfield Collection")
gr.Interface(
fn=predict_retrieval_gradio,
inputs=[
gr.Textbox(
lines=3,
label="Enter your query text here:",
placeholder="e.g., Does high-dose vitamin C cure cancer?"
),
gr.Radio(
[
"SPLADE-cocondenser-distil (weighting and expansion)",
"SPLADE-v3-Lexical (weighting)",
"SPLADE-v3-Doc (binary)"
],
label="Choose Query Representation Model",
value="SPLADE-cocondenser-distil (weighting and expansion)"
),
gr.Radio(
[
"SPLADE-cocondenser-distil",
"SPLADE-v3-Lexical",
"SPLADE-v3-Doc"
],
label=f"Document Index Model (Pre-indexed with: {initial_doc_model_for_indexing})",
value=initial_doc_model_for_indexing,
interactive=False # This radio is fixed for simplicity
)
],
outputs=gr.Markdown(),
allow_flagging="never",
# live=True # retrieval is too heavy for live
)
gr.Markdown("---") # Separator
gr.Markdown("### Get Specific Retrieval Examples")
specific_example_output = gr.Markdown()
specific_example_button = gr.Button("Get Random Query with High/Low Qrel Docs")
specific_example_button.click(
fn=get_specific_retrieval_examples,
inputs=[],
outputs=specific_example_output
)
demo.launch()
|