File size: 12,261 Bytes
a4de739
da3acda
3035463
a4de739
3035463
da3acda
 
ab88097
 
4a365e4
 
da3acda
ab88097
da3acda
 
 
 
ab88097
da3acda
ab88097
da3acda
 
ab88097
3035463
ab88097
 
 
 
 
3035463
ab88097
 
da3acda
4a365e4
 
 
 
 
 
 
 
 
 
 
 
f4c84bc
7c4de94
 
 
 
 
 
 
f4c84bc
7c4de94
 
 
 
 
f4c84bc
7c4de94
 
 
 
f4c84bc
7c4de94
f4c84bc
7c4de94
da3acda
 
a4de739
3035463
da3acda
ab88097
3035463
da3acda
 
3035463
 
da3acda
 
3035463
45b666a
 
 
 
3035463
ab88097
3035463
 
 
 
45b666a
3035463
 
 
 
 
da3acda
3035463
 
 
 
 
ab88097
3035463
 
 
45b666a
3035463
45b666a
3035463
 
da3acda
 
 
 
 
4a365e4
ab88097
 
45b666a
ab88097
 
da3acda
 
ab88097
22a278f
ab88097
 
 
 
 
 
 
22a278f
17afa62
 
 
 
 
 
7c4de94
 
ab88097
 
 
22a278f
ab88097
 
22a278f
ab88097
 
 
22a278f
ab88097
22a278f
ab88097
22a278f
ab88097
 
 
22a278f
ab88097
 
22a278f
ab88097
 
 
3035463
 
 
da3acda
f4c84bc
 
4a365e4
 
 
 
 
 
 
 
 
f4c84bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a365e4
 
 
 
 
 
 
 
f4c84bc
4a365e4
f4c84bc
4a365e4
 
 
f4c84bc
 
 
 
 
 
 
 
 
 
4a365e4
 
 
 
 
da3acda
 
ab88097
da3acda
4a365e4
f4c84bc
4a365e4
f4c84bc
 
 
da3acda
 
 
3035463
 
da3acda
 
 
7c4de94
4a365e4
f4c84bc
 
7c4de94
da3acda
ab88097
da3acda
 
 
 
 
 
 
 
7c4de94
f4c84bc
da3acda
3035463
 
 
a4de739
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import gradio as gr
from transformers import AutoTokenizer, AutoModelForMaskedLM, AutoModel
import torch

# --- Model Loading ---
tokenizer_splade = None
model_splade = None
tokenizer_splade_lexical = None
model_splade_lexical = None
tokenizer_splade_doc = None # New tokenizer for SPLADE-v3-Doc
model_splade_doc = None     # New model for SPLADE-v3-Doc

# Load SPLADE v3 model (original)
try:
    tokenizer_splade = AutoTokenizer.from_pretrained("naver/splade-cocondenser-selfdistil")
    model_splade = AutoModelForMaskedLM.from_pretrained("naver/splade-cocondenser-selfdistil")
    model_splade.eval() # Set to evaluation mode for inference
    print("SPLADE v3 (cocondenser) model loaded successfully!")
except Exception as e:
    print(f"Error loading SPLADE (cocondenser) model: {e}")
    print("Please ensure you have accepted any user access agreements on the Hugging Face Hub page for 'naver/splade-cocondenser-selfdistil'.")

# Load SPLADE v3 Lexical model
try:
    splade_lexical_model_name = "naver/splade-v3-lexical"
    tokenizer_splade_lexical = AutoTokenizer.from_pretrained(splade_lexical_model_name)
    model_splade_lexical = AutoModelForMaskedLM.from_pretrained(splade_lexical_model_name)
    model_splade_lexical.eval() # Set to evaluation mode for inference
    print(f"SPLADE v3 Lexical model '{splade_lexical_model_name}' loaded successfully!")
except Exception as e:
    print(f"Error loading SPLADE v3 Lexical model: {e}")
    print(f"Please ensure '{splade_lexical_model_name}' is accessible (check Hugging Face Hub for potential agreements).")

# Load SPLADE v3 Doc model (NEW)
try:
    splade_doc_model_name = "naver/splade-v3-doc"
    tokenizer_splade_doc = AutoTokenizer.from_pretrained(splade_doc_model_name)
    model_splade_doc = AutoModelForMaskedLM.from_pretrained(splade_doc_model_name)
    model_splade_doc.eval() # Set to evaluation mode for inference
    print(f"SPLADE v3 Doc model '{splade_doc_model_name}' loaded successfully!")
except Exception as e:
    print(f"Error loading SPLADE v3 Doc model: {e}")
    print(f"Please ensure '{splade_doc_model_name}' is accessible (check Hugging Face Hub for potential agreements).")


# --- Helper function for lexical mask (still needed for splade-v3-lexical) ---
def create_lexical_bow_mask(input_ids, vocab_size, tokenizer):
    """
    Creates a binary bag-of-words mask from input_ids,
    zeroing out special tokens and padding.
    """
    bow_mask = torch.zeros(vocab_size, device=input_ids.device)
    meaningful_token_ids = []
    for token_id in input_ids.squeeze().tolist():
        if token_id not in [
            tokenizer.pad_token_id,
            tokenizer.cls_token_id,
            tokenizer.sep_token_id,
            tokenizer.mask_token_id,
            tokenizer.unk_token_id
        ]:
            meaningful_token_ids.append(token_id)
    
    if meaningful_token_ids:
        bow_mask[list(set(meaningful_token_ids))] = 1
            
    return bow_mask.unsqueeze(0)


# --- Core Representation Functions ---

def get_splade_representation(text):
    if tokenizer_splade is None or model_splade is None:
        return "SPLADE (cocondenser) model is not loaded. Please check the console for loading errors."

    inputs = tokenizer_splade(text, return_tensors="pt", padding=True, truncation=True)
    inputs = {k: v.to(model_splade.device) for k, v in inputs.items()}

    with torch.no_grad():
        output = model_splade(**inputs)

    if hasattr(output, 'logits'):
        splade_vector = torch.max(
            torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
            dim=1
        )[0].squeeze()
    else:
        return "Model output structure not as expected for SPLADE (cocondenser). 'logits' not found."

    indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
    if not isinstance(indices, list):
        indices = [indices]

    values = splade_vector[indices].cpu().tolist()
    token_weights = dict(zip(indices, values))

    meaningful_tokens = {}
    for token_id, weight in token_weights.items():
        decoded_token = tokenizer_splade.decode([token_id])
        if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
            meaningful_tokens[decoded_token] = weight

    sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)

    formatted_output = "SPLADE (cocondenser) Representation (All Non-Zero Terms):\n"
    if not sorted_representation:
        formatted_output += "No significant terms found for this input.\n"
    else:
        for term, weight in sorted_representation:
            formatted_output += f"- **{term}**: {weight:.4f}\n"

    formatted_output += "\n--- Raw SPLADE Vector Info ---\n"
    formatted_output += f"Total non-zero terms in vector: {len(indices)}\n"
    formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade.vocab_size):.2%}\n"

    return formatted_output


def get_splade_lexical_representation(text):
    if tokenizer_splade_lexical is None or model_splade_lexical is None:
        return "SPLADE v3 Lexical model is not loaded. Please check the console for loading errors."

    inputs = tokenizer_splade_lexical(text, return_tensors="pt", padding=True, truncation=True)
    inputs = {k: v.to(model_splade_lexical.device) for k, v in inputs.items()}

    with torch.no_grad():
        output = model_splade_lexical(**inputs)

    if hasattr(output, 'logits'):
        splade_vector = torch.max(
            torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
            dim=1
        )[0].squeeze()
    else:
        return "Model output structure not as expected for SPLADE v3 Lexical. 'logits' not found."

    # --- Apply Lexical Mask (always applied for this function now) ---
    vocab_size = tokenizer_splade_lexical.vocab_size
    bow_mask = create_lexical_bow_mask(
        inputs['input_ids'], vocab_size, tokenizer_splade_lexical
    ).squeeze() 
    splade_vector = splade_vector * bow_mask
    # --- End Lexical Mask Logic ---

    indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
    if not isinstance(indices, list):
        indices = [indices]

    values = splade_vector[indices].cpu().tolist()
    token_weights = dict(zip(indices, values))

    meaningful_tokens = {}
    for token_id, weight in token_weights.items():
        decoded_token = tokenizer_splade_lexical.decode([token_id])
        if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
            meaningful_tokens[decoded_token] = weight

    sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)

    formatted_output = "SPLADE v3 Lexical Representation (All Non-Zero Terms):\n"
    if not sorted_representation:
        formatted_output += "No significant terms found for this input.\n"
    else:
        for term, weight in sorted_representation:
            formatted_output += f"- **{term}**: {weight:.4f}\n"

    formatted_output += "\n--- Raw SPLADE Vector Info ---\n"
    formatted_output += f"Total non-zero terms in vector: {len(indices)}\n"
    formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_lexical.vocab_size):.2%}\n"

    return formatted_output


# NEW: Function for SPLADE-v3-Doc representation (Binary Sparse)
def get_splade_doc_representation(text):
    if tokenizer_splade_doc is None or model_splade_doc is None:
        return "SPLADE v3 Doc model is not loaded. Please check the console for loading errors."

    inputs = tokenizer_splade_doc(text, return_tensors="pt", padding=True, truncation=True)
    inputs = {k: v.to(model_splade_doc.device) for k, v in inputs.items()}

    with torch.no_grad():
        output = model_splade_doc(**inputs)

    if not hasattr(output, "logits"):
        return "SPLADE v3 Doc model output structure not as expected. 'logits' not found."

    # For SPLADE-v3-Doc, the output is often a binary sparse vector.
    # We will assume a simple binarization based on a threshold or selecting active tokens.
    # A common way to get "binary" is to use softplus and then binarize, or directly binarize max logits.
    # Given the "no weighting, no expansion" request, we'll aim for a strict presence check.

    # Option 1: Binarize based on softplus output and threshold (similar to UNICOIL)
    # This might still activate some "expanded" terms if the model predicts them strongly.
    # transformed_scores = torch.log(1 + torch.exp(output.logits)) # Softplus
    # splade_vector_raw = torch.max(transformed_scores * inputs['attention_mask'].unsqueeze(-1), dim=1).values
    # binary_splade_vector = (splade_vector_raw > 0.5).float() # Binarize

    # Option 2: Rely on the original BoW for terms, with 1 for presence
    # This aligns best with "no weighting, no expansion"
    vocab_size = tokenizer_splade_doc.vocab_size
    binary_splade_vector = create_lexical_bow_mask(
        inputs['input_ids'], vocab_size, tokenizer_splade_doc
    ).squeeze()
    
    # We set values to 1 as it's a binary representation, not weighted
    indices = torch.nonzero(binary_splade_vector).squeeze().cpu().tolist()
    if not isinstance(indices, list): # Handle case where only one non-zero index
        indices = [indices] if indices else [] # Ensure it's a list even if empty or single
    
    # Values are all 1 for binary representation
    values = [1.0] * len(indices) 
    token_weights = dict(zip(indices, values))

    meaningful_tokens = {}
    for token_id, weight in token_weights.items():
        decoded_token = tokenizer_splade_doc.decode([token_id])
        if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
            meaningful_tokens[decoded_token] = weight

    sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[0]) # Sort alphabetically for binary

    formatted_output = "SPLADE v3 Doc Representation (Binary Sparse - Lexical Only):\n"
    if not sorted_representation:
        formatted_output += "No significant terms found for this input.\n"
    else:
        # Display as terms with no weights as they are binary (value 1)
        for i, (term, _) in enumerate(sorted_representation):
            # Limit display for very long lists for readability
            if i >= 50:
                formatted_output += f"...and {len(sorted_representation) - 50} more terms.\n"
                break
            formatted_output += f"- **{term}**\n"

    formatted_output += "\n--- Raw Binary Sparse Vector Info ---\n"
    formatted_output += f"Total activated terms: {len(indices)}\n"
    formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_doc.vocab_size):.2%}\n"

    return formatted_output


# --- Unified Prediction Function for Gradio ---
def predict_representation(model_choice, text):
    if model_choice == "SPLADE (cocondenser)":
        return get_splade_representation(text)
    elif model_choice == "SPLADE-v3-Lexical":
        # Always applies lexical mask for this option
        return get_splade_lexical_representation(text)
    elif model_choice == "SPLADE-v3-Doc": # Simplified to a single option
        # This function now intrinsically handles binary, lexical-only output
        return get_splade_doc_representation(text) 
    else:
        return "Please select a model."

# --- Gradio Interface Setup ---
demo = gr.Interface(
    fn=predict_representation,
    inputs=[
        gr.Radio(
            [
                "SPLADE (cocondenser)",
                "SPLADE-v3-Lexical",
                "SPLADE-v3-Doc" # Only one option for Doc model
            ],
            label="Choose Representation Model",
            value="SPLADE (cocondenser)" # Default selection
        ),
        gr.Textbox(
            lines=5,
            label="Enter your query or document text here:",
            placeholder="e.g., Why is Padua the nicest city in Italy?"
        )
    ],
    outputs=gr.Markdown(),
    title="🌌 Sparse Representation Generator",
    description="Enter any text to see its sparse vector representation.", # Simplified description
    allow_flagging="never"
)

# Launch the Gradio app
demo.launch()