Spaces:
Running
Running
File size: 12,261 Bytes
a4de739 da3acda 3035463 a4de739 3035463 da3acda ab88097 4a365e4 da3acda ab88097 da3acda ab88097 da3acda ab88097 da3acda ab88097 3035463 ab88097 3035463 ab88097 da3acda 4a365e4 f4c84bc 7c4de94 f4c84bc 7c4de94 f4c84bc 7c4de94 f4c84bc 7c4de94 f4c84bc 7c4de94 da3acda a4de739 3035463 da3acda ab88097 3035463 da3acda 3035463 da3acda 3035463 45b666a 3035463 ab88097 3035463 45b666a 3035463 da3acda 3035463 ab88097 3035463 45b666a 3035463 45b666a 3035463 da3acda 4a365e4 ab88097 45b666a ab88097 da3acda ab88097 22a278f ab88097 22a278f 17afa62 7c4de94 ab88097 22a278f ab88097 22a278f ab88097 22a278f ab88097 22a278f ab88097 22a278f ab88097 22a278f ab88097 22a278f ab88097 3035463 da3acda f4c84bc 4a365e4 f4c84bc 4a365e4 f4c84bc 4a365e4 f4c84bc 4a365e4 f4c84bc 4a365e4 da3acda ab88097 da3acda 4a365e4 f4c84bc 4a365e4 f4c84bc da3acda 3035463 da3acda 7c4de94 4a365e4 f4c84bc 7c4de94 da3acda ab88097 da3acda 7c4de94 f4c84bc da3acda 3035463 a4de739 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForMaskedLM, AutoModel
import torch
# --- Model Loading ---
tokenizer_splade = None
model_splade = None
tokenizer_splade_lexical = None
model_splade_lexical = None
tokenizer_splade_doc = None # New tokenizer for SPLADE-v3-Doc
model_splade_doc = None # New model for SPLADE-v3-Doc
# Load SPLADE v3 model (original)
try:
tokenizer_splade = AutoTokenizer.from_pretrained("naver/splade-cocondenser-selfdistil")
model_splade = AutoModelForMaskedLM.from_pretrained("naver/splade-cocondenser-selfdistil")
model_splade.eval() # Set to evaluation mode for inference
print("SPLADE v3 (cocondenser) model loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE (cocondenser) model: {e}")
print("Please ensure you have accepted any user access agreements on the Hugging Face Hub page for 'naver/splade-cocondenser-selfdistil'.")
# Load SPLADE v3 Lexical model
try:
splade_lexical_model_name = "naver/splade-v3-lexical"
tokenizer_splade_lexical = AutoTokenizer.from_pretrained(splade_lexical_model_name)
model_splade_lexical = AutoModelForMaskedLM.from_pretrained(splade_lexical_model_name)
model_splade_lexical.eval() # Set to evaluation mode for inference
print(f"SPLADE v3 Lexical model '{splade_lexical_model_name}' loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE v3 Lexical model: {e}")
print(f"Please ensure '{splade_lexical_model_name}' is accessible (check Hugging Face Hub for potential agreements).")
# Load SPLADE v3 Doc model (NEW)
try:
splade_doc_model_name = "naver/splade-v3-doc"
tokenizer_splade_doc = AutoTokenizer.from_pretrained(splade_doc_model_name)
model_splade_doc = AutoModelForMaskedLM.from_pretrained(splade_doc_model_name)
model_splade_doc.eval() # Set to evaluation mode for inference
print(f"SPLADE v3 Doc model '{splade_doc_model_name}' loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE v3 Doc model: {e}")
print(f"Please ensure '{splade_doc_model_name}' is accessible (check Hugging Face Hub for potential agreements).")
# --- Helper function for lexical mask (still needed for splade-v3-lexical) ---
def create_lexical_bow_mask(input_ids, vocab_size, tokenizer):
"""
Creates a binary bag-of-words mask from input_ids,
zeroing out special tokens and padding.
"""
bow_mask = torch.zeros(vocab_size, device=input_ids.device)
meaningful_token_ids = []
for token_id in input_ids.squeeze().tolist():
if token_id not in [
tokenizer.pad_token_id,
tokenizer.cls_token_id,
tokenizer.sep_token_id,
tokenizer.mask_token_id,
tokenizer.unk_token_id
]:
meaningful_token_ids.append(token_id)
if meaningful_token_ids:
bow_mask[list(set(meaningful_token_ids))] = 1
return bow_mask.unsqueeze(0)
# --- Core Representation Functions ---
def get_splade_representation(text):
if tokenizer_splade is None or model_splade is None:
return "SPLADE (cocondenser) model is not loaded. Please check the console for loading errors."
inputs = tokenizer_splade(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade(**inputs)
if hasattr(output, 'logits'):
splade_vector = torch.max(
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
dim=1
)[0].squeeze()
else:
return "Model output structure not as expected for SPLADE (cocondenser). 'logits' not found."
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices]
values = splade_vector[indices].cpu().tolist()
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)
formatted_output = "SPLADE (cocondenser) Representation (All Non-Zero Terms):\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
for term, weight in sorted_representation:
formatted_output += f"- **{term}**: {weight:.4f}\n"
formatted_output += "\n--- Raw SPLADE Vector Info ---\n"
formatted_output += f"Total non-zero terms in vector: {len(indices)}\n"
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade.vocab_size):.2%}\n"
return formatted_output
def get_splade_lexical_representation(text):
if tokenizer_splade_lexical is None or model_splade_lexical is None:
return "SPLADE v3 Lexical model is not loaded. Please check the console for loading errors."
inputs = tokenizer_splade_lexical(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade_lexical.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade_lexical(**inputs)
if hasattr(output, 'logits'):
splade_vector = torch.max(
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
dim=1
)[0].squeeze()
else:
return "Model output structure not as expected for SPLADE v3 Lexical. 'logits' not found."
# --- Apply Lexical Mask (always applied for this function now) ---
vocab_size = tokenizer_splade_lexical.vocab_size
bow_mask = create_lexical_bow_mask(
inputs['input_ids'], vocab_size, tokenizer_splade_lexical
).squeeze()
splade_vector = splade_vector * bow_mask
# --- End Lexical Mask Logic ---
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices]
values = splade_vector[indices].cpu().tolist()
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade_lexical.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)
formatted_output = "SPLADE v3 Lexical Representation (All Non-Zero Terms):\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
for term, weight in sorted_representation:
formatted_output += f"- **{term}**: {weight:.4f}\n"
formatted_output += "\n--- Raw SPLADE Vector Info ---\n"
formatted_output += f"Total non-zero terms in vector: {len(indices)}\n"
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_lexical.vocab_size):.2%}\n"
return formatted_output
# NEW: Function for SPLADE-v3-Doc representation (Binary Sparse)
def get_splade_doc_representation(text):
if tokenizer_splade_doc is None or model_splade_doc is None:
return "SPLADE v3 Doc model is not loaded. Please check the console for loading errors."
inputs = tokenizer_splade_doc(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade_doc.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade_doc(**inputs)
if not hasattr(output, "logits"):
return "SPLADE v3 Doc model output structure not as expected. 'logits' not found."
# For SPLADE-v3-Doc, the output is often a binary sparse vector.
# We will assume a simple binarization based on a threshold or selecting active tokens.
# A common way to get "binary" is to use softplus and then binarize, or directly binarize max logits.
# Given the "no weighting, no expansion" request, we'll aim for a strict presence check.
# Option 1: Binarize based on softplus output and threshold (similar to UNICOIL)
# This might still activate some "expanded" terms if the model predicts them strongly.
# transformed_scores = torch.log(1 + torch.exp(output.logits)) # Softplus
# splade_vector_raw = torch.max(transformed_scores * inputs['attention_mask'].unsqueeze(-1), dim=1).values
# binary_splade_vector = (splade_vector_raw > 0.5).float() # Binarize
# Option 2: Rely on the original BoW for terms, with 1 for presence
# This aligns best with "no weighting, no expansion"
vocab_size = tokenizer_splade_doc.vocab_size
binary_splade_vector = create_lexical_bow_mask(
inputs['input_ids'], vocab_size, tokenizer_splade_doc
).squeeze()
# We set values to 1 as it's a binary representation, not weighted
indices = torch.nonzero(binary_splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list): # Handle case where only one non-zero index
indices = [indices] if indices else [] # Ensure it's a list even if empty or single
# Values are all 1 for binary representation
values = [1.0] * len(indices)
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade_doc.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[0]) # Sort alphabetically for binary
formatted_output = "SPLADE v3 Doc Representation (Binary Sparse - Lexical Only):\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
# Display as terms with no weights as they are binary (value 1)
for i, (term, _) in enumerate(sorted_representation):
# Limit display for very long lists for readability
if i >= 50:
formatted_output += f"...and {len(sorted_representation) - 50} more terms.\n"
break
formatted_output += f"- **{term}**\n"
formatted_output += "\n--- Raw Binary Sparse Vector Info ---\n"
formatted_output += f"Total activated terms: {len(indices)}\n"
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_doc.vocab_size):.2%}\n"
return formatted_output
# --- Unified Prediction Function for Gradio ---
def predict_representation(model_choice, text):
if model_choice == "SPLADE (cocondenser)":
return get_splade_representation(text)
elif model_choice == "SPLADE-v3-Lexical":
# Always applies lexical mask for this option
return get_splade_lexical_representation(text)
elif model_choice == "SPLADE-v3-Doc": # Simplified to a single option
# This function now intrinsically handles binary, lexical-only output
return get_splade_doc_representation(text)
else:
return "Please select a model."
# --- Gradio Interface Setup ---
demo = gr.Interface(
fn=predict_representation,
inputs=[
gr.Radio(
[
"SPLADE (cocondenser)",
"SPLADE-v3-Lexical",
"SPLADE-v3-Doc" # Only one option for Doc model
],
label="Choose Representation Model",
value="SPLADE (cocondenser)" # Default selection
),
gr.Textbox(
lines=5,
label="Enter your query or document text here:",
placeholder="e.g., Why is Padua the nicest city in Italy?"
)
],
outputs=gr.Markdown(),
title="🌌 Sparse Representation Generator",
description="Enter any text to see its sparse vector representation.", # Simplified description
allow_flagging="never"
)
# Launch the Gradio app
demo.launch() |