File size: 20,782 Bytes
a4de739
01b1a90
3035463
01b1a90
4e0cddb
 
a4de739
4e0cddb
da3acda
 
ab88097
 
6024481
 
da3acda
ab88097
da3acda
 
 
01b1a90
6024481
da3acda
6024481
da3acda
 
ab88097
3035463
ab88097
 
 
01b1a90
6024481
3035463
6024481
ab88097
da3acda
6024481
4a365e4
 
 
 
01b1a90
6024481
4a365e4
6024481
4a365e4
 
 
4e0cddb
b0796be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01b1a90
b0796be
7c4de94
da3acda
01b1a90
4e0cddb
6024481
da3acda
6024481
3035463
da3acda
 
3035463
 
da3acda
 
3035463
45b666a
 
 
b0796be
3035463
6024481
3035463
 
 
01b1a90
45b666a
3035463
 
 
 
 
da3acda
3035463
 
 
 
 
f384e43
3035463
 
 
45b666a
3035463
45b666a
3e832a4
3035463
da3acda
 
 
 
 
4a365e4
ab88097
6024481
45b666a
ab88097
 
da3acda
 
ab88097
22a278f
ab88097
 
 
 
b0796be
ab88097
6024481
22a278f
6024481
17afa62
b0796be
17afa62
 
b0796be
17afa62
7c4de94
ab88097
 
01b1a90
22a278f
ab88097
 
22a278f
ab88097
 
 
22a278f
ab88097
22a278f
ab88097
22a278f
6024481
ab88097
 
22a278f
ab88097
 
22a278f
ab88097
 
 
3035463
 
 
da3acda
f4c84bc
4a365e4
6024481
4a365e4
 
 
 
 
 
 
f4c84bc
b0796be
f4c84bc
 
b0796be
01b1a90
f4c84bc
b0796be
f4c84bc
 
6024481
 
01b1a90
6024481
4a365e4
 
 
 
 
 
 
 
6024481
4a365e4
6024481
4a365e4
 
 
f4c84bc
6024481
f4c84bc
 
 
 
 
 
4a365e4
 
 
 
 
01b1a90
 
6024481
 
f384e43
4a365e4
f384e43
01b1a90
da3acda
 
 
3bcd060
 
372cab2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bcd060
 
372cab2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bcd060
 
f384e43
 
 
 
 
 
372cab2
3bcd060
 
 
 
 
 
 
 
 
 
 
 
372cab2
 
3bcd060
372cab2
 
3bcd060
 
372cab2
 
 
3bcd060
 
 
 
 
372cab2
 
 
 
 
 
 
 
01b1a90
 
 
2009929
372cab2
01b1a90
 
a0d59cd
 
01b1a90
 
 
 
 
a0d59cd
 
 
01b1a90
a0d59cd
f384e43
01b1a90
 
 
 
 
 
 
 
 
44519b1
01b1a90
372cab2
0cf7ec0
372cab2
3bcd060
 
 
 
f384e43
 
 
3bcd060
 
372cab2
3bcd060
372cab2
 
3bcd060
 
f384e43
3bcd060
 
 
 
f384e43
372cab2
 
 
 
113d174
372cab2
 
 
 
0cf7ec0
372cab2
 
 
 
 
01b1a90
372cab2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
import gradio as gr
from transformers import AutoTokenizer, AutoModelForMaskedLM
import torch
import numpy as np
from tqdm.auto import tqdm # Still useful for model loading progress if desired, but not strictly necessary for this simplified version
import os # Still useful for general purpose, but not explicitly used in this simplified version

# --- Model Loading ---
tokenizer_splade = None
model_splade = None
tokenizer_splade_lexical = None
model_splade_lexical = None
tokenizer_splade_doc = None
model_splade_doc = None

# Load SPLADE v3 model (original)
try:
    tokenizer_splade = AutoTokenizer.from_pretrained("naver/splade-cocondenser-selfdistil")
    model_splade = AutoModelForMaskedLM.from_pretrained("naver/splade-cocondenser-selfdistil")
    model_splade.eval()
    print("SPLADE-cocondenser-distil model loaded successfully!")
except Exception as e:
    print(f"Error loading SPLADE-cocondenser-distil model: {e}")
    print("Please ensure you have accepted any user access agreements on the Hugging Face Hub page for 'naver/splade-cocondenser-selfdistil'.")

# Load SPLADE v3 Lexical model
try:
    splade_lexical_model_name = "naver/splade-v3-lexical"
    tokenizer_splade_lexical = AutoTokenizer.from_pretrained(splade_lexical_model_name)
    model_splade_lexical = AutoModelForMaskedLM.from_pretrained(splade_lexical_model_name)
    model_splade_lexical.eval()
    print(f"SPLADE-v3-Lexical model '{splade_lexical_model_name}' loaded successfully!")
except Exception as e:
    print(f"Error loading SPLADE-v3-Lexical model: {e}")
    print(f"Please ensure '{splade_lexical_model_name}' is accessible (check Hugging Face Hub for potential agreements).")

# Load SPLADE v3 Doc model
try:
    splade_doc_model_name = "naver/splade-v3-doc"
    tokenizer_splade_doc = AutoTokenizer.from_pretrained(splade_doc_model_name)
    model_splade_doc = AutoModelForMaskedLM.from_pretrained(splade_doc_model_name)
    model_splade_doc.eval()
    print(f"SPLADE-v3-Doc model '{splade_doc_model_name}' loaded successfully!")
except Exception as e:
    print(f"Error loading SPLADE-v3-Doc model: {e}")
    print(f"Please ensure '{splade_doc_model_name}' is accessible (check Hugging Face Hub for potential agreements).")


# --- Helper function for lexical mask (now handles batches, but used for single input here) ---
def create_lexical_bow_mask(input_ids_batch, vocab_size, tokenizer):
    """
    Creates a batch of lexical BOW masks.
    input_ids_batch: torch.Tensor of shape (batch_size, sequence_length)
    vocab_size: int, size of the tokenizer vocabulary
    tokenizer: the tokenizer object
    Returns: torch.Tensor of shape (batch_size, vocab_size)
    """
    batch_size = input_ids_batch.shape[0]
    bow_masks = torch.zeros(batch_size, vocab_size, device=input_ids_batch.device)

    for i in range(batch_size):
        input_ids = input_ids_batch[i] # Get input_ids for the current item in the batch
        meaningful_token_ids = []
        for token_id in input_ids.tolist():
            if token_id not in [
                tokenizer.pad_token_id,
                tokenizer.cls_token_id,
                tokenizer.sep_token_id,
                tokenizer.mask_token_id,
                tokenizer.unk_token_id
            ]:
                meaningful_token_ids.append(token_id)
                
        if meaningful_token_ids:
            # Apply mask to the current row in the batch
            bow_masks[i, list(set(meaningful_token_ids))] = 1
            
    return bow_masks


# --- Core Representation Functions (Return Formatted Strings - for Explorer Tab) ---
# These functions take single text input for the Explorer tab
def get_splade_cocondenser_representation(text):
    if tokenizer_splade is None or model_splade is None:
        return "SPLADE-cocondenser-distil model is not loaded. Please check the console for loading errors."

    inputs = tokenizer_splade(text, return_tensors="pt", padding=True, truncation=True)
    inputs = {k: v.to(model_splade.device) for k, v in inputs.items()}

    with torch.no_grad():
        output = model_splade(**inputs)

    if hasattr(output, 'logits'):
        splade_vector = torch.max(
            torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
            dim=1
        )[0].squeeze() # Squeeze is fine here as it's a single input
    else:
        return "Model output structure not as expected for SPLADE-cocondenser-distil. 'logits' not found."

    indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
    if not isinstance(indices, list):
        indices = [indices] if indices else []

    values = splade_vector[indices].cpu().tolist()
    token_weights = dict(zip(indices, values))

    meaningful_tokens = {}
    for token_id, weight in token_weights.items():
        decoded_token = tokenizer_splade.decode([token_id])
        if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
            meaningful_tokens[decoded_token] = weight

    sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)

    formatted_output = "MLM encoder (SPLADE-cocondenser-distil):\n"
    if not sorted_representation:
        formatted_output += "No significant terms found for this input.\n"
    else:
        for term, weight in sorted_representation:
            formatted_output += f"- **{term}**: {weight:.4f}\n"

    formatted_output += "\n--- Sparse Vector Info ---\n"
    formatted_output += f"Total non-zero terms in vector: {len(indices)}\n"
    formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade.vocab_size):.2%}\n"

    return formatted_output


def get_splade_lexical_representation(text):
    if tokenizer_splade_lexical is None or model_splade_lexical is None:
        return "SPLADE-v3-Lexical model is not loaded. Please check the console for loading errors."

    inputs = tokenizer_splade_lexical(text, return_tensors="pt", padding=True, truncation=True)
    inputs = {k: v.to(model_splade_lexical.device) for k, v in inputs.items()}

    with torch.no_grad():
        output = model_splade_lexical(**inputs)

    if hasattr(output, 'logits'):
        splade_vector = torch.max(
            torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
            dim=1
        )[0].squeeze() # Squeeze is fine here
    else:
        return "Model output structure not as expected for SPLADE-v3-Lexical. 'logits' not found."

    # Always apply lexical mask for this model's specific behavior
    vocab_size = tokenizer_splade_lexical.vocab_size
    # Call with unsqueezed input_ids for single sample processing
    bow_mask = create_lexical_bow_mask(
        inputs['input_ids'], vocab_size, tokenizer_splade_lexical
    ).squeeze() # Squeeze back for single output
    splade_vector = splade_vector * bow_mask

    indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
    if not isinstance(indices, list):
        indices = [indices] if indices else []

    values = splade_vector[indices].cpu().tolist()
    token_weights = dict(zip(indices, values))

    meaningful_tokens = {}
    for token_id, weight in token_weights.items():
        decoded_token = tokenizer_splade_lexical.decode([token_id])
        if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
            meaningful_tokens[decoded_token] = weight

    sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)

    formatted_output = "SPLADE-v3-Lexical Representation (Weighting):\n"
    if not sorted_representation:
        formatted_output += "No significant terms found for this input.\n"
    else:
        for term, weight in sorted_representation:
            formatted_output += f"- **{term}**: {weight:.4f}\n"

    formatted_output += "\n--- Raw SPLADE Vector Info ---\n"
    formatted_output += f"Total non-zero terms in vector: {len(indices)}\n"
    formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_lexical.vocab_size):.2%}\n"

    return formatted_output


def get_splade_doc_representation(text):
    if tokenizer_splade_doc is None or model_splade_doc is None:
        return "SPLADE-v3-Doc model is not loaded. Please check the console for loading errors."

    inputs = tokenizer_splade_doc(text, return_tensors="pt", padding=True, truncation=True)
    inputs = {k: v.to(model_splade_doc.device) for k, v in inputs.items()}

    with torch.no_grad():
        output = model_splade_doc(**inputs)

    if not hasattr(output, "logits"):
        return "Model output structure not as expected. 'logits' not found."

    vocab_size = tokenizer_splade_doc.vocab_size
    # Call with unsqueezed input_ids for single sample processing
    binary_splade_vector = create_lexical_bow_mask(
        inputs['input_ids'], vocab_size, tokenizer_splade_doc
    ).squeeze() # Squeeze back for single output
    
    indices = torch.nonzero(binary_splade_vector).squeeze().cpu().tolist()
    if not isinstance(indices, list):
        indices = [indices] if indices else []
        
    values = [1.0] * len(indices) # All values are 1 for binary representation
    token_weights = dict(zip(indices, values))

    meaningful_tokens = {}
    for token_id, weight in token_weights.items():
        decoded_token = tokenizer_splade_doc.decode([token_id])
        if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
            meaningful_tokens[decoded_token] = weight

    sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[0]) # Sort alphabetically for clarity

    formatted_output = "SPLADE-v3-Doc Representation (Binary):\n"
    if not sorted_representation:
        formatted_output += "No significant terms found for this input.\n"
    else:
        for i, (term, _) in enumerate(sorted_representation):
            if i >= 50: # Limit display for very long lists
                formatted_output += f"...and {len(sorted_representation) - 50} more terms.\n"
                break
            formatted_output += f"- **{term}**\n"

    formatted_output += "\n--- Raw Binary Sparse Vector Info ---\n"
    formatted_output += f"Total activated terms: {len(indices)}\n"
    formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_doc.vocab_size):.2%}\n"

    return formatted_output


# --- Unified Prediction Function for the Explorer Tab ---
def predict_representation_explorer(model_choice, text):
    if model_choice == "SPLADE-cocondenser-distil (weighting and expansion)":
        return get_splade_cocondenser_representation(text)
    elif model_choice == "MLP encoder (SPLADE-v3-lexical)":
        return get_splade_lexical_representation(text)
    elif model_choice == "Binary encoder":
        return get_splade_doc_representation(text)
    else:
        return "Please select a model."

# --- Core Representation Functions (Return RAW TENSORS - for Dot Product Tab) ---
# These functions remain unchanged from the previous iteration, as they return the raw tensors.
def get_splade_cocondenser_vector(text):
    if tokenizer_splade is None or model_splade is None:
        return None

    inputs = tokenizer_splade(text, return_tensors="pt", padding=True, truncation=True)
    inputs = {k: v.to(model_splade.device) for k, v in inputs.items()}

    with torch.no_grad():
        output = model_splade(**inputs)

    if hasattr(output, 'logits'):
        splade_vector = torch.max(
            torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
            dim=1
        )[0].squeeze()
        return splade_vector
    return None

def get_splade_lexical_vector(text):
    if tokenizer_splade_lexical is None or model_splade_lexical is None:
        return None

    inputs = tokenizer_splade_lexical(text, return_tensors="pt", padding=True, truncation=True)
    inputs = {k: v.to(model_splade_lexical.device) for k, v in inputs.items()}

    with torch.no_grad():
        output = model_splade_lexical(**inputs)

    if hasattr(output, 'logits'):
        splade_vector = torch.max(
            torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
            dim=1
        )[0].squeeze()
        
        vocab_size = tokenizer_splade_lexical.vocab_size
        bow_mask = create_lexical_bow_mask(
            inputs['input_ids'], vocab_size, tokenizer_splade_lexical
        ).squeeze()
        
        splade_vector = splade_vector * bow_mask
        return splade_vector
    return None

def get_splade_doc_vector(text):
    if tokenizer_splade_doc is None or model_splade_doc is None:
        return None

    inputs = tokenizer_splade_doc(text, return_tensors="pt", padding=True, truncation=True)
    inputs = {k: v.to(model_splade_doc.device) for k, v in inputs.items()}

    with torch.no_grad():
        output = model_splade_doc(**inputs)

    if hasattr(output, "logits"):
        vocab_size = tokenizer_splade_doc.vocab_size
        binary_splade_vector = create_lexical_bow_mask(
            inputs['input_ids'], vocab_size, tokenizer_splade_doc
        ).squeeze()
        return binary_splade_vector
    return None


# --- Function to get formatted representation from a raw vector and tokenizer ---
# This function remains unchanged as it's a generic formatter for any sparse vector.
def format_sparse_vector_output(splade_vector, tokenizer, is_binary=False):
    if splade_vector is None:
        return "Failed to generate vector."

    indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
    if not isinstance(indices, list):
        indices = [indices] if indices else []

    if is_binary:
        values = [1.0] * len(indices)
    else:
        values = splade_vector[indices].cpu().tolist()
    
    token_weights = dict(zip(indices, values))

    meaningful_tokens = {}
    for token_id, weight in token_weights.items():
        decoded_token = tokenizer.decode([token_id])
        if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
            meaningful_tokens[decoded_token] = weight

    if is_binary:
        sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[0]) # Sort alphabetically for binary
    else:
        sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)

    formatted_output = ""
    if not sorted_representation:
        formatted_output += "No significant terms found.\n"
    else:
        for i, (term, weight) in enumerate(sorted_representation):
            if i >= 50 and is_binary: # Limit display for very long binary lists
                formatted_output += f"...and {len(sorted_representation) - 50} more terms.\n"
                break
            if is_binary:
                formatted_output += f"- **{term}**\n"
            else:
                formatted_output += f"- **{term}**: {weight:.4f}\n"

    formatted_output += f"\nTotal non-zero terms: {len(indices)}\n"
    formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer.vocab_size):.2%}\n"
    
    return formatted_output


# --- NEW/MODIFIED: Helper to get the correct vector function, tokenizer, and binary flag ---
def get_model_assets(model_choice_str):
    if model_choice_str == "MLM encoder (SPLADE-cocondenser-distil)":
        return get_splade_cocondenser_vector, tokenizer_splade, False, "MLM encoder (SPLADE-cocondenser-distil)"
    elif model_choice_str == "MLP encoder (SPLADE-v3-lexical)":
        return get_splade_lexical_vector, tokenizer_splade_lexical, False, "MLP encoder (SPLADE-v3-lexical)"
    elif model_choice_str == "Binary encoder":
        return get_splade_doc_vector, tokenizer_splade_doc, True, "Binary encoder"
    else:
        return None, None, False, "Unknown Model"

# --- MODIFIED: Dot Product Calculation Function for the new tab ---
def calculate_dot_product_and_representations_independent(query_model_choice, doc_model_choice, query_text, doc_text):
    query_vector_fn, query_tokenizer, query_is_binary, query_model_name_display = get_model_assets(query_model_choice)
    doc_vector_fn, doc_tokenizer, doc_is_binary, doc_model_name_display = get_model_assets(doc_model_choice)

    if query_vector_fn is None or doc_vector_fn is None:
        return "Please select valid models for both query and document encoding.", "", ""

    query_vector = query_vector_fn(query_text)
    doc_vector = doc_vector_fn(doc_text)

    if query_vector is None or doc_vector is None:
        return "Failed to generate one or both vectors. Please check model loading and input text.", "", ""

    # Calculate dot product
    # Ensure both vectors are on CPU before dot product to avoid device mismatch issues
    # and to ensure .item() works reliably for conversion to float.
    dot_product = float(torch.dot(query_vector.cpu(), doc_vector.cpu()).item())

    # Format representations
    query_rep_str = f"Query Representation ({query_model_name_display}):\n"
    query_rep_str += format_sparse_vector_output(query_vector, query_tokenizer, query_is_binary)
    
    doc_rep_str = f"Document Representation ({doc_model_name_display}):\n"
    doc_rep_str += format_sparse_vector_output(doc_vector, doc_tokenizer, doc_is_binary)

    # Combine output
    full_output = f"### Dot Product Score: {dot_product:.6f}\n\n"
    full_output += "---\n\n"
    full_output += f"{query_rep_str}\n\n---\n\n{doc_rep_str}"
    
    return full_output


# --- Gradio Interface Setup with Tabs ---
with gr.Blocks(title="SPLADE Demos") as demo:
    gr.Markdown("# 🌌 Sparse Encoder Playground") # Updated title
    gr.Markdown("Explore different SPLADE models and their sparse representation types, and calculate similarity between query and document representations.") # Updated description

    with gr.Tabs():
        with gr.TabItem("Sparse Representation"):
            gr.Markdown("### Produce a Sparse Representation of of an Input Text")
            gr.Interface(
                fn=predict_representation_explorer,
                inputs=[
                    gr.Radio(
                        [
                            "MLM encoder (SPLADE-cocondenser-distil)",
                            "MLP encoder (SPLADE-v3-lexical)",
                            "Binary Encoder"
                        ],
                        label="Choose Sparse Encoder",
                        value="MLM encoder (SPLADE-cocondenser-distil)"
                    ),
                    gr.Textbox(
                        lines=5,
                        label="Enter your query or document text here:",
                        placeholder="e.g., Why is Padua the nicest city in Italy?"
                    )
                ],
                outputs=gr.Markdown(),
                allow_flagging="never",
                # live=True # Setting live=True might be slow for complex models on every keystroke
            )
        
        with gr.TabItem("Compare Encoders"): # NEW TAB
            gr.Markdown("### Calculate Dot Product Similarity between Query and Document")
            gr.Markdown("Select **independent** SPLADE models to encode your query and document, then see their sparse representations and their similarity score.")
            
            # Define the common model choices for cleaner code
            model_choices = [
                "MLM encoder (SPLADE-cocondenser-distil)",
                "MLP encoder (SPLADE-v3-lexical)",
                "Binary encoder"
            ]

            gr.Interface(
                fn=calculate_dot_product_and_representations_independent, # MODIFIED FUNCTION NAME
                inputs=[
                    gr.Radio(
                        model_choices,
                        label="Choose Query Encoding Model",
                        value="MLM encoder (SPLADE-cocondenser-distil)" # Default value
                    ),
                    gr.Radio(
                        model_choices,
                        label="Choose Document Encoding Model",
                        value="MLM encoder (SPLADE-cocondenser-distil)" # Default value
                    ),
                    gr.Textbox(
                        lines=3,
                        label="Enter Query Text:",
                        placeholder="e.g., famous dishes of Padua"
                    ),
                    gr.Textbox(
                        lines=5,
                        label="Enter Document Text:",
                        placeholder="e.g., Padua's cuisine is as famous as its legendary University."
                    )
                ],
                outputs=gr.Markdown(),
                allow_flagging="never"
            )

demo.launch()