Spaces:
Running
Running
File size: 20,782 Bytes
a4de739 01b1a90 3035463 01b1a90 4e0cddb a4de739 4e0cddb da3acda ab88097 6024481 da3acda ab88097 da3acda 01b1a90 6024481 da3acda 6024481 da3acda ab88097 3035463 ab88097 01b1a90 6024481 3035463 6024481 ab88097 da3acda 6024481 4a365e4 01b1a90 6024481 4a365e4 6024481 4a365e4 4e0cddb b0796be 01b1a90 b0796be 7c4de94 da3acda 01b1a90 4e0cddb 6024481 da3acda 6024481 3035463 da3acda 3035463 da3acda 3035463 45b666a b0796be 3035463 6024481 3035463 01b1a90 45b666a 3035463 da3acda 3035463 f384e43 3035463 45b666a 3035463 45b666a 3e832a4 3035463 da3acda 4a365e4 ab88097 6024481 45b666a ab88097 da3acda ab88097 22a278f ab88097 b0796be ab88097 6024481 22a278f 6024481 17afa62 b0796be 17afa62 b0796be 17afa62 7c4de94 ab88097 01b1a90 22a278f ab88097 22a278f ab88097 22a278f ab88097 22a278f ab88097 22a278f 6024481 ab88097 22a278f ab88097 22a278f ab88097 3035463 da3acda f4c84bc 4a365e4 6024481 4a365e4 f4c84bc b0796be f4c84bc b0796be 01b1a90 f4c84bc b0796be f4c84bc 6024481 01b1a90 6024481 4a365e4 6024481 4a365e4 6024481 4a365e4 f4c84bc 6024481 f4c84bc 4a365e4 01b1a90 6024481 f384e43 4a365e4 f384e43 01b1a90 da3acda 3bcd060 372cab2 3bcd060 372cab2 3bcd060 f384e43 372cab2 3bcd060 372cab2 3bcd060 372cab2 3bcd060 372cab2 3bcd060 372cab2 01b1a90 2009929 372cab2 01b1a90 a0d59cd 01b1a90 a0d59cd 01b1a90 a0d59cd f384e43 01b1a90 44519b1 01b1a90 372cab2 0cf7ec0 372cab2 3bcd060 f384e43 3bcd060 372cab2 3bcd060 372cab2 3bcd060 f384e43 3bcd060 f384e43 372cab2 113d174 372cab2 0cf7ec0 372cab2 01b1a90 372cab2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForMaskedLM
import torch
import numpy as np
from tqdm.auto import tqdm # Still useful for model loading progress if desired, but not strictly necessary for this simplified version
import os # Still useful for general purpose, but not explicitly used in this simplified version
# --- Model Loading ---
tokenizer_splade = None
model_splade = None
tokenizer_splade_lexical = None
model_splade_lexical = None
tokenizer_splade_doc = None
model_splade_doc = None
# Load SPLADE v3 model (original)
try:
tokenizer_splade = AutoTokenizer.from_pretrained("naver/splade-cocondenser-selfdistil")
model_splade = AutoModelForMaskedLM.from_pretrained("naver/splade-cocondenser-selfdistil")
model_splade.eval()
print("SPLADE-cocondenser-distil model loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE-cocondenser-distil model: {e}")
print("Please ensure you have accepted any user access agreements on the Hugging Face Hub page for 'naver/splade-cocondenser-selfdistil'.")
# Load SPLADE v3 Lexical model
try:
splade_lexical_model_name = "naver/splade-v3-lexical"
tokenizer_splade_lexical = AutoTokenizer.from_pretrained(splade_lexical_model_name)
model_splade_lexical = AutoModelForMaskedLM.from_pretrained(splade_lexical_model_name)
model_splade_lexical.eval()
print(f"SPLADE-v3-Lexical model '{splade_lexical_model_name}' loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE-v3-Lexical model: {e}")
print(f"Please ensure '{splade_lexical_model_name}' is accessible (check Hugging Face Hub for potential agreements).")
# Load SPLADE v3 Doc model
try:
splade_doc_model_name = "naver/splade-v3-doc"
tokenizer_splade_doc = AutoTokenizer.from_pretrained(splade_doc_model_name)
model_splade_doc = AutoModelForMaskedLM.from_pretrained(splade_doc_model_name)
model_splade_doc.eval()
print(f"SPLADE-v3-Doc model '{splade_doc_model_name}' loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE-v3-Doc model: {e}")
print(f"Please ensure '{splade_doc_model_name}' is accessible (check Hugging Face Hub for potential agreements).")
# --- Helper function for lexical mask (now handles batches, but used for single input here) ---
def create_lexical_bow_mask(input_ids_batch, vocab_size, tokenizer):
"""
Creates a batch of lexical BOW masks.
input_ids_batch: torch.Tensor of shape (batch_size, sequence_length)
vocab_size: int, size of the tokenizer vocabulary
tokenizer: the tokenizer object
Returns: torch.Tensor of shape (batch_size, vocab_size)
"""
batch_size = input_ids_batch.shape[0]
bow_masks = torch.zeros(batch_size, vocab_size, device=input_ids_batch.device)
for i in range(batch_size):
input_ids = input_ids_batch[i] # Get input_ids for the current item in the batch
meaningful_token_ids = []
for token_id in input_ids.tolist():
if token_id not in [
tokenizer.pad_token_id,
tokenizer.cls_token_id,
tokenizer.sep_token_id,
tokenizer.mask_token_id,
tokenizer.unk_token_id
]:
meaningful_token_ids.append(token_id)
if meaningful_token_ids:
# Apply mask to the current row in the batch
bow_masks[i, list(set(meaningful_token_ids))] = 1
return bow_masks
# --- Core Representation Functions (Return Formatted Strings - for Explorer Tab) ---
# These functions take single text input for the Explorer tab
def get_splade_cocondenser_representation(text):
if tokenizer_splade is None or model_splade is None:
return "SPLADE-cocondenser-distil model is not loaded. Please check the console for loading errors."
inputs = tokenizer_splade(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade(**inputs)
if hasattr(output, 'logits'):
splade_vector = torch.max(
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
dim=1
)[0].squeeze() # Squeeze is fine here as it's a single input
else:
return "Model output structure not as expected for SPLADE-cocondenser-distil. 'logits' not found."
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices] if indices else []
values = splade_vector[indices].cpu().tolist()
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)
formatted_output = "MLM encoder (SPLADE-cocondenser-distil):\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
for term, weight in sorted_representation:
formatted_output += f"- **{term}**: {weight:.4f}\n"
formatted_output += "\n--- Sparse Vector Info ---\n"
formatted_output += f"Total non-zero terms in vector: {len(indices)}\n"
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade.vocab_size):.2%}\n"
return formatted_output
def get_splade_lexical_representation(text):
if tokenizer_splade_lexical is None or model_splade_lexical is None:
return "SPLADE-v3-Lexical model is not loaded. Please check the console for loading errors."
inputs = tokenizer_splade_lexical(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade_lexical.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade_lexical(**inputs)
if hasattr(output, 'logits'):
splade_vector = torch.max(
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
dim=1
)[0].squeeze() # Squeeze is fine here
else:
return "Model output structure not as expected for SPLADE-v3-Lexical. 'logits' not found."
# Always apply lexical mask for this model's specific behavior
vocab_size = tokenizer_splade_lexical.vocab_size
# Call with unsqueezed input_ids for single sample processing
bow_mask = create_lexical_bow_mask(
inputs['input_ids'], vocab_size, tokenizer_splade_lexical
).squeeze() # Squeeze back for single output
splade_vector = splade_vector * bow_mask
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices] if indices else []
values = splade_vector[indices].cpu().tolist()
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade_lexical.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)
formatted_output = "SPLADE-v3-Lexical Representation (Weighting):\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
for term, weight in sorted_representation:
formatted_output += f"- **{term}**: {weight:.4f}\n"
formatted_output += "\n--- Raw SPLADE Vector Info ---\n"
formatted_output += f"Total non-zero terms in vector: {len(indices)}\n"
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_lexical.vocab_size):.2%}\n"
return formatted_output
def get_splade_doc_representation(text):
if tokenizer_splade_doc is None or model_splade_doc is None:
return "SPLADE-v3-Doc model is not loaded. Please check the console for loading errors."
inputs = tokenizer_splade_doc(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade_doc.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade_doc(**inputs)
if not hasattr(output, "logits"):
return "Model output structure not as expected. 'logits' not found."
vocab_size = tokenizer_splade_doc.vocab_size
# Call with unsqueezed input_ids for single sample processing
binary_splade_vector = create_lexical_bow_mask(
inputs['input_ids'], vocab_size, tokenizer_splade_doc
).squeeze() # Squeeze back for single output
indices = torch.nonzero(binary_splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices] if indices else []
values = [1.0] * len(indices) # All values are 1 for binary representation
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade_doc.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[0]) # Sort alphabetically for clarity
formatted_output = "SPLADE-v3-Doc Representation (Binary):\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
for i, (term, _) in enumerate(sorted_representation):
if i >= 50: # Limit display for very long lists
formatted_output += f"...and {len(sorted_representation) - 50} more terms.\n"
break
formatted_output += f"- **{term}**\n"
formatted_output += "\n--- Raw Binary Sparse Vector Info ---\n"
formatted_output += f"Total activated terms: {len(indices)}\n"
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_doc.vocab_size):.2%}\n"
return formatted_output
# --- Unified Prediction Function for the Explorer Tab ---
def predict_representation_explorer(model_choice, text):
if model_choice == "SPLADE-cocondenser-distil (weighting and expansion)":
return get_splade_cocondenser_representation(text)
elif model_choice == "MLP encoder (SPLADE-v3-lexical)":
return get_splade_lexical_representation(text)
elif model_choice == "Binary encoder":
return get_splade_doc_representation(text)
else:
return "Please select a model."
# --- Core Representation Functions (Return RAW TENSORS - for Dot Product Tab) ---
# These functions remain unchanged from the previous iteration, as they return the raw tensors.
def get_splade_cocondenser_vector(text):
if tokenizer_splade is None or model_splade is None:
return None
inputs = tokenizer_splade(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade(**inputs)
if hasattr(output, 'logits'):
splade_vector = torch.max(
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
dim=1
)[0].squeeze()
return splade_vector
return None
def get_splade_lexical_vector(text):
if tokenizer_splade_lexical is None or model_splade_lexical is None:
return None
inputs = tokenizer_splade_lexical(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade_lexical.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade_lexical(**inputs)
if hasattr(output, 'logits'):
splade_vector = torch.max(
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
dim=1
)[0].squeeze()
vocab_size = tokenizer_splade_lexical.vocab_size
bow_mask = create_lexical_bow_mask(
inputs['input_ids'], vocab_size, tokenizer_splade_lexical
).squeeze()
splade_vector = splade_vector * bow_mask
return splade_vector
return None
def get_splade_doc_vector(text):
if tokenizer_splade_doc is None or model_splade_doc is None:
return None
inputs = tokenizer_splade_doc(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade_doc.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade_doc(**inputs)
if hasattr(output, "logits"):
vocab_size = tokenizer_splade_doc.vocab_size
binary_splade_vector = create_lexical_bow_mask(
inputs['input_ids'], vocab_size, tokenizer_splade_doc
).squeeze()
return binary_splade_vector
return None
# --- Function to get formatted representation from a raw vector and tokenizer ---
# This function remains unchanged as it's a generic formatter for any sparse vector.
def format_sparse_vector_output(splade_vector, tokenizer, is_binary=False):
if splade_vector is None:
return "Failed to generate vector."
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices] if indices else []
if is_binary:
values = [1.0] * len(indices)
else:
values = splade_vector[indices].cpu().tolist()
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
if is_binary:
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[0]) # Sort alphabetically for binary
else:
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)
formatted_output = ""
if not sorted_representation:
formatted_output += "No significant terms found.\n"
else:
for i, (term, weight) in enumerate(sorted_representation):
if i >= 50 and is_binary: # Limit display for very long binary lists
formatted_output += f"...and {len(sorted_representation) - 50} more terms.\n"
break
if is_binary:
formatted_output += f"- **{term}**\n"
else:
formatted_output += f"- **{term}**: {weight:.4f}\n"
formatted_output += f"\nTotal non-zero terms: {len(indices)}\n"
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer.vocab_size):.2%}\n"
return formatted_output
# --- NEW/MODIFIED: Helper to get the correct vector function, tokenizer, and binary flag ---
def get_model_assets(model_choice_str):
if model_choice_str == "MLM encoder (SPLADE-cocondenser-distil)":
return get_splade_cocondenser_vector, tokenizer_splade, False, "MLM encoder (SPLADE-cocondenser-distil)"
elif model_choice_str == "MLP encoder (SPLADE-v3-lexical)":
return get_splade_lexical_vector, tokenizer_splade_lexical, False, "MLP encoder (SPLADE-v3-lexical)"
elif model_choice_str == "Binary encoder":
return get_splade_doc_vector, tokenizer_splade_doc, True, "Binary encoder"
else:
return None, None, False, "Unknown Model"
# --- MODIFIED: Dot Product Calculation Function for the new tab ---
def calculate_dot_product_and_representations_independent(query_model_choice, doc_model_choice, query_text, doc_text):
query_vector_fn, query_tokenizer, query_is_binary, query_model_name_display = get_model_assets(query_model_choice)
doc_vector_fn, doc_tokenizer, doc_is_binary, doc_model_name_display = get_model_assets(doc_model_choice)
if query_vector_fn is None or doc_vector_fn is None:
return "Please select valid models for both query and document encoding.", "", ""
query_vector = query_vector_fn(query_text)
doc_vector = doc_vector_fn(doc_text)
if query_vector is None or doc_vector is None:
return "Failed to generate one or both vectors. Please check model loading and input text.", "", ""
# Calculate dot product
# Ensure both vectors are on CPU before dot product to avoid device mismatch issues
# and to ensure .item() works reliably for conversion to float.
dot_product = float(torch.dot(query_vector.cpu(), doc_vector.cpu()).item())
# Format representations
query_rep_str = f"Query Representation ({query_model_name_display}):\n"
query_rep_str += format_sparse_vector_output(query_vector, query_tokenizer, query_is_binary)
doc_rep_str = f"Document Representation ({doc_model_name_display}):\n"
doc_rep_str += format_sparse_vector_output(doc_vector, doc_tokenizer, doc_is_binary)
# Combine output
full_output = f"### Dot Product Score: {dot_product:.6f}\n\n"
full_output += "---\n\n"
full_output += f"{query_rep_str}\n\n---\n\n{doc_rep_str}"
return full_output
# --- Gradio Interface Setup with Tabs ---
with gr.Blocks(title="SPLADE Demos") as demo:
gr.Markdown("# 🌌 Sparse Encoder Playground") # Updated title
gr.Markdown("Explore different SPLADE models and their sparse representation types, and calculate similarity between query and document representations.") # Updated description
with gr.Tabs():
with gr.TabItem("Sparse Representation"):
gr.Markdown("### Produce a Sparse Representation of of an Input Text")
gr.Interface(
fn=predict_representation_explorer,
inputs=[
gr.Radio(
[
"MLM encoder (SPLADE-cocondenser-distil)",
"MLP encoder (SPLADE-v3-lexical)",
"Binary Encoder"
],
label="Choose Sparse Encoder",
value="MLM encoder (SPLADE-cocondenser-distil)"
),
gr.Textbox(
lines=5,
label="Enter your query or document text here:",
placeholder="e.g., Why is Padua the nicest city in Italy?"
)
],
outputs=gr.Markdown(),
allow_flagging="never",
# live=True # Setting live=True might be slow for complex models on every keystroke
)
with gr.TabItem("Compare Encoders"): # NEW TAB
gr.Markdown("### Calculate Dot Product Similarity between Query and Document")
gr.Markdown("Select **independent** SPLADE models to encode your query and document, then see their sparse representations and their similarity score.")
# Define the common model choices for cleaner code
model_choices = [
"MLM encoder (SPLADE-cocondenser-distil)",
"MLP encoder (SPLADE-v3-lexical)",
"Binary encoder"
]
gr.Interface(
fn=calculate_dot_product_and_representations_independent, # MODIFIED FUNCTION NAME
inputs=[
gr.Radio(
model_choices,
label="Choose Query Encoding Model",
value="MLM encoder (SPLADE-cocondenser-distil)" # Default value
),
gr.Radio(
model_choices,
label="Choose Document Encoding Model",
value="MLM encoder (SPLADE-cocondenser-distil)" # Default value
),
gr.Textbox(
lines=3,
label="Enter Query Text:",
placeholder="e.g., famous dishes of Padua"
),
gr.Textbox(
lines=5,
label="Enter Document Text:",
placeholder="e.g., Padua's cuisine is as famous as its legendary University."
)
],
outputs=gr.Markdown(),
allow_flagging="never"
)
demo.launch() |