Spaces:
Running
Running
File size: 11,383 Bytes
a4de739 da3acda 3035463 a4de739 3035463 da3acda ab88097 6024481 da3acda ab88097 da3acda 6024481 da3acda 6024481 da3acda ab88097 3035463 ab88097 6024481 3035463 6024481 ab88097 da3acda 6024481 4a365e4 6024481 4a365e4 6024481 4a365e4 6024481 7c4de94 f4c84bc 7c4de94 f4c84bc 7c4de94 f4c84bc 7c4de94 f4c84bc 7c4de94 da3acda a4de739 6024481 da3acda 6024481 3035463 da3acda 3035463 da3acda 3035463 6024481 45b666a 3035463 6024481 3035463 45b666a 3035463 da3acda 3035463 6024481 3035463 45b666a 3035463 45b666a 3035463 da3acda 4a365e4 ab88097 6024481 45b666a ab88097 da3acda ab88097 22a278f ab88097 6024481 22a278f 6024481 17afa62 7c4de94 ab88097 22a278f ab88097 22a278f ab88097 22a278f ab88097 22a278f ab88097 22a278f 6024481 ab88097 22a278f ab88097 22a278f ab88097 3035463 da3acda 6024481 f4c84bc 4a365e4 6024481 4a365e4 f4c84bc 6024481 f4c84bc 6024481 f4c84bc 6024481 f4c84bc 6024481 f4c84bc 6024481 4a365e4 6024481 4a365e4 6024481 4a365e4 f4c84bc 6024481 f4c84bc 4a365e4 da3acda 6024481 4a365e4 6024481 f4c84bc da3acda 3035463 da3acda 7c4de94 358e025 6024481 7c4de94 da3acda 6024481 da3acda 7c4de94 6024481 da3acda 3035463 a4de739 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForMaskedLM, AutoModel
import torch
# --- Model Loading ---
tokenizer_splade = None
model_splade = None
tokenizer_splade_lexical = None
model_splade_lexical = None
tokenizer_splade_doc = None
model_splade_doc = None
# Load SPLADE v3 model (original)
try:
tokenizer_splade = AutoTokenizer.from_pretrained("naver/splade-cocondenser-selfdistil")
model_splade = AutoModelForMaskedLM.from_pretrained("naver/splade-cocondenser-selfdistil")
model_splade.eval() # Set to evaluation mode for inference
print("SPLADE-cocondenser-distil model loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE-cocondenser-distil model: {e}")
print("Please ensure you have accepted any user access agreements on the Hugging Face Hub page for 'naver/splade-cocondenser-selfdistil'.")
# Load SPLADE v3 Lexical model
try:
splade_lexical_model_name = "naver/splade-v3-lexical"
tokenizer_splade_lexical = AutoTokenizer.from_pretrained(splade_lexical_model_name)
model_splade_lexical = AutoModelForMaskedLM.from_pretrained(splade_lexical_model_name)
model_splade_lexical.eval() # Set to evaluation mode for inference
print(f"SPLADE-v3-Lexical model '{splade_lexical_model_name}' loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE-v3-Lexical model: {e}")
print(f"Please ensure '{splade_lexical_model_name}' is accessible (check Hugging Face Hub for potential agreements).")
# Load SPLADE v3 Doc model
try:
splade_doc_model_name = "naver/splade-v3-doc"
tokenizer_splade_doc = AutoTokenizer.from_pretrained(splade_doc_model_name)
model_splade_doc = AutoModelForMaskedLM.from_pretrained(splade_doc_model_name)
model_splade_doc.eval() # Set to evaluation mode for inference
print(f"SPLADE-v3-Doc model '{splade_doc_model_name}' loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE-v3-Doc model: {e}")
print(f"Please ensure '{splade_doc_model_name}' is accessible (check Hugging Face Hub for potential agreements).")
# --- Helper function for lexical mask ---
def create_lexical_bow_mask(input_ids, vocab_size, tokenizer):
"""
Creates a binary bag-of-words mask from input_ids,
zeroing out special tokens and padding.
"""
bow_mask = torch.zeros(vocab_size, device=input_ids.device)
meaningful_token_ids = []
for token_id in input_ids.squeeze().tolist():
if token_id not in [
tokenizer.pad_token_id,
tokenizer.cls_token_id,
tokenizer.sep_token_id,
tokenizer.mask_token_id,
tokenizer.unk_token_id
]:
meaningful_token_ids.append(token_id)
if meaningful_token_ids:
bow_mask[list(set(meaningful_token_ids))] = 1
return bow_mask.unsqueeze(0)
# --- Core Representation Functions ---
def get_splade_cocondenser_representation(text):
if tokenizer_splade is None or model_splade is None:
return "SPLADE-cocondenser-distil model is not loaded. Please check the console for loading errors."
inputs = tokenizer_splade(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade(**inputs)
if hasattr(output, 'logits'):
# Standard SPLADE calculation for learned weighting and expansion
splade_vector = torch.max(
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
dim=1
)[0].squeeze()
else:
return "Model output structure not as expected for SPLADE-cocondenser-distil. 'logits' not found."
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices]
values = splade_vector[indices].cpu().tolist()
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)
formatted_output = "SPLADE-cocondenser-distil Representation (Weighting and Expansion):\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
for term, weight in sorted_representation:
formatted_output += f"- **{term}**: {weight:.4f}\n"
formatted_output += "\n--- Raw SPLADE Vector Info ---\n"
formatted_output += f"Total non-zero terms in vector: {len(indices)}\n"
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade.vocab_size):.2%}\n"
return formatted_output
def get_splade_lexical_representation(text):
if tokenizer_splade_lexical is None or model_splade_lexical is None:
return "SPLADE-v3-Lexical model is not loaded. Please check the console for loading errors."
inputs = tokenizer_splade_lexical(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade_lexical.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade_lexical(**inputs)
if hasattr(output, 'logits'):
splade_vector = torch.max(
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
dim=1
)[0].squeeze()
else:
return "Model output structure not as expected for SPLADE-v3-Lexical. 'logits' not found."
# Always apply lexical mask for this model's specific behavior
vocab_size = tokenizer_splade_lexical.vocab_size
bow_mask = create_lexical_bow_mask(
inputs['input_ids'], vocab_size, tokenizer_splade_lexical
).squeeze()
splade_vector = splade_vector * bow_mask
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices]
values = splade_vector[indices].cpu().tolist()
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade_lexical.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)
formatted_output = "SPLADE-v3-Lexical Representation (Weighting):\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
for term, weight in sorted_representation:
formatted_output += f"- **{term}**: {weight:.4f}\n"
formatted_output += "\n--- Raw SPLADE Vector Info ---\n"
formatted_output += f"Total non-zero terms in vector: {len(indices)}\n"
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_lexical.vocab_size):.2%}\n"
return formatted_output
# Function for SPLADE-v3-Doc representation (Binary Sparse - Lexical Only)
def get_splade_doc_representation(text):
if tokenizer_splade_doc is None or model_splade_doc is None:
return "SPLADE-v3-Doc model is not loaded. Please check the console for loading errors."
inputs = tokenizer_splade_doc(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade_doc.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade_doc(**inputs)
if not hasattr(output, "logits"):
return "SPLADE-v3-Doc model output structure not as expected. 'logits' not found."
# For SPLADE-v3-Doc, assuming output is designed to be binary and lexical-only.
# We will derive the output directly from the input tokens themselves,
# as the model's primary role in this context is as a pre-trained LM feature extractor
# for a document-side, lexical-only binary sparse representation.
vocab_size = tokenizer_splade_doc.vocab_size
binary_splade_vector = create_lexical_bow_mask( # Use the BOW mask directly for binary
inputs['input_ids'], vocab_size, tokenizer_splade_doc
).squeeze()
indices = torch.nonzero(binary_splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices] if indices else []
values = [1.0] * len(indices) # All values are 1 for binary representation
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade_doc.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[0]) # Sort alphabetically for clarity
formatted_output = "SPLADE-v3-Doc Representation (Binary):\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
for i, (term, _) in enumerate(sorted_representation):
if i >= 50: # Limit display for very long lists
formatted_output += f"...and {len(sorted_representation) - 50} more terms.\n"
break
formatted_output += f"- **{term}**\n"
formatted_output += "\n--- Raw Binary Sparse Vector Info ---\n"
formatted_output += f"Total activated terms: {len(indices)}\n"
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_doc.vocab_size):.2%}\n"
return formatted_output
# --- Unified Prediction Function for Gradio ---
def predict_representation(model_choice, text):
if model_choice == "SPLADE-cocondenser-distil (weighting and expansion)":
return get_splade_cocondenser_representation(text)
elif model_choice == "SPLADE-v3-Lexical (weighting)":
return get_splade_lexical_representation(text)
elif model_choice == "SPLADE-v3-Doc (binary)":
return get_splade_doc_representation(text)
else:
return "Please select a model."
# --- Gradio Interface Setup ---
demo = gr.Interface(
fn=predict_representation,
inputs=[
gr.Radio(
[
"SPLADE-cocondenser-distil (weighting and expansion)",
"SPLADE-v3-Lexical (weighting)",
"SPLADE-v3-Doc (binary)"
],
label="Choose Representation Model",
value="SPLADE-cocondenser-distil (weighting and expansion)" # Corrected default value
),
gr.Textbox(
lines=5,
label="Enter your query or document text here:",
placeholder="e.g., Why is Padua the nicest city in Italy?"
)
],
outputs=gr.Markdown(),
title="🌌 Sparse Representation Generator",
description="Explore different SPLADE models and their sparse representation types: weighted and expansive, weighted and lexical-only, or strictly binary.",
allow_flagging="never"
)
# Launch the Gradio app
demo.launch() |