Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,24 +5,22 @@ import os
|
|
5 |
from huggingface_hub import login
|
6 |
import spacy
|
7 |
|
8 |
-
#
|
9 |
login(token=os.environ.get("HUGGINGFACEHUB_API_TOKEN"))
|
10 |
|
11 |
-
#
|
12 |
summarizer = pipeline("text2text-generation", model="declare-lab/flan-alpaca-base")
|
13 |
-
|
14 |
-
# β
Load SpaCy English model for NLP keyword extraction
|
15 |
nlp = spacy.load("en_core_web_sm")
|
16 |
|
17 |
-
#
|
18 |
def extract_relevant_keywords(text):
|
19 |
doc = nlp(text.lower())
|
20 |
return set(
|
21 |
-
token.
|
22 |
if token.pos_ in {"NOUN", "PROPN"} and not token.is_stop and len(token.text) > 2
|
23 |
)
|
24 |
|
25 |
-
#
|
26 |
def compare_keywords(resume_text, job_desc):
|
27 |
resume_words = extract_relevant_keywords(resume_text)
|
28 |
job_words = extract_relevant_keywords(job_desc)
|
@@ -30,46 +28,45 @@ def compare_keywords(resume_text, job_desc):
|
|
30 |
missing = job_words - resume_words
|
31 |
return matched, missing
|
32 |
|
33 |
-
#
|
34 |
def highlight_keywords(resume_text, matched):
|
35 |
highlighted = resume_text
|
36 |
for word in sorted(matched, key=len, reverse=True):
|
37 |
highlighted = re.sub(rf"\b({re.escape(word)})\b", r"**\1**", highlighted, flags=re.IGNORECASE)
|
38 |
return highlighted
|
39 |
|
40 |
-
#
|
41 |
def extract_missing_keywords_with_llm(job_desc, resume_text):
|
42 |
prompt = f"""
|
43 |
Given the following job description and resume, list the important skills, tools, and concepts from the job description that are missing or weakly represented in the resume.
|
|
|
44 |
|
45 |
Job Description:
|
46 |
{job_desc}
|
47 |
|
48 |
Resume:
|
49 |
{resume_text}
|
50 |
-
|
51 |
-
Only list the missing keywords as bullet points.
|
52 |
"""
|
53 |
-
result = summarizer(prompt, max_new_tokens=300, do_sample=
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
#
|
57 |
def build_dynamic_prompt(job_desc, resume_text, analyze_with_jd):
|
58 |
prompt = f"""
|
59 |
-
|
60 |
-
|
61 |
-
Classify the content of the resume below into logical sections such as:
|
62 |
-
- Education
|
63 |
-
- Work Experience
|
64 |
- Technical Skills
|
65 |
- Soft Skills
|
|
|
|
|
66 |
- Certifications
|
67 |
-
- Projects
|
68 |
-
- Achievements
|
69 |
-
|
70 |
-
Use markdown format with headers (###) for each section.
|
71 |
|
72 |
-
|
73 |
|
74 |
Job Description:
|
75 |
{job_desc if analyze_with_jd else '[None provided]'}
|
@@ -77,29 +74,27 @@ Job Description:
|
|
77 |
Resume:
|
78 |
{resume_text}
|
79 |
|
80 |
-
|
81 |
"""
|
82 |
return prompt
|
83 |
|
84 |
-
#
|
85 |
def analyze_resume(job_desc, resume_text, analyze_with_jd):
|
86 |
if not resume_text.strip():
|
87 |
return "β οΈ Please paste your resume text."
|
88 |
|
89 |
-
|
90 |
|
91 |
try:
|
92 |
-
|
93 |
-
|
94 |
|
95 |
-
# Perform keyword comparison and highlighting
|
96 |
if analyze_with_jd and job_desc:
|
97 |
matched, missing = compare_keywords(resume_text, job_desc)
|
98 |
highlighted_resume = highlight_keywords(resume_text, matched)
|
99 |
llm_missing_keywords = extract_missing_keywords_with_llm(job_desc, resume_text)
|
100 |
|
101 |
-
return f"""
|
102 |
-
### π Resume with Highlighted Matches
|
103 |
|
104 |
{highlighted_resume}
|
105 |
|
@@ -116,14 +111,12 @@ def analyze_resume(job_desc, resume_text, analyze_with_jd):
|
|
116 |
|
117 |
---
|
118 |
|
119 |
-
{
|
120 |
-
|
121 |
-
return structured_response
|
122 |
-
|
123 |
except Exception as e:
|
124 |
return f"β Error: {str(e)}"
|
125 |
|
126 |
-
#
|
127 |
def create_ui():
|
128 |
with gr.Blocks() as demo:
|
129 |
with gr.Row():
|
@@ -141,3 +134,4 @@ def create_ui():
|
|
141 |
|
142 |
if __name__ == '__main__':
|
143 |
create_ui().launch()
|
|
|
|
5 |
from huggingface_hub import login
|
6 |
import spacy
|
7 |
|
8 |
+
# Authenticate with Hugging Face token
|
9 |
login(token=os.environ.get("HUGGINGFACEHUB_API_TOKEN"))
|
10 |
|
11 |
+
# Load models
|
12 |
summarizer = pipeline("text2text-generation", model="declare-lab/flan-alpaca-base")
|
|
|
|
|
13 |
nlp = spacy.load("en_core_web_sm")
|
14 |
|
15 |
+
# Extract contextually relevant keywords using spaCy
|
16 |
def extract_relevant_keywords(text):
|
17 |
doc = nlp(text.lower())
|
18 |
return set(
|
19 |
+
token.lemma_ for token in doc
|
20 |
if token.pos_ in {"NOUN", "PROPN"} and not token.is_stop and len(token.text) > 2
|
21 |
)
|
22 |
|
23 |
+
# Compare resume and JD for keyword matches
|
24 |
def compare_keywords(resume_text, job_desc):
|
25 |
resume_words = extract_relevant_keywords(resume_text)
|
26 |
job_words = extract_relevant_keywords(job_desc)
|
|
|
28 |
missing = job_words - resume_words
|
29 |
return matched, missing
|
30 |
|
31 |
+
# Highlight matched words in resume text
|
32 |
def highlight_keywords(resume_text, matched):
|
33 |
highlighted = resume_text
|
34 |
for word in sorted(matched, key=len, reverse=True):
|
35 |
highlighted = re.sub(rf"\b({re.escape(word)})\b", r"**\1**", highlighted, flags=re.IGNORECASE)
|
36 |
return highlighted
|
37 |
|
38 |
+
# LLM-based keyword extraction from JD
|
39 |
def extract_missing_keywords_with_llm(job_desc, resume_text):
|
40 |
prompt = f"""
|
41 |
Given the following job description and resume, list the important skills, tools, and concepts from the job description that are missing or weakly represented in the resume.
|
42 |
+
Only list the missing keywords as bullet points.
|
43 |
|
44 |
Job Description:
|
45 |
{job_desc}
|
46 |
|
47 |
Resume:
|
48 |
{resume_text}
|
|
|
|
|
49 |
"""
|
50 |
+
result = summarizer(prompt, max_new_tokens=300, do_sample=False)[0]
|
51 |
+
raw_text = result.get('generated_text', result.get('summary_text', str(result))).strip()
|
52 |
+
|
53 |
+
# Clean and deduplicate
|
54 |
+
lines = re.findall(r"-\s*(.+)", raw_text)
|
55 |
+
cleaned = list({kw.strip().lower() for kw in lines if len(kw.strip()) > 2})
|
56 |
+
return ', '.join(sorted(cleaned)) or "None"
|
57 |
|
58 |
+
# Prompt builder for structured LLM resume analysis
|
59 |
def build_dynamic_prompt(job_desc, resume_text, analyze_with_jd):
|
60 |
prompt = f"""
|
61 |
+
Act as a resume evaluator. Break the following resume into meaningful sections such as:
|
|
|
|
|
|
|
|
|
62 |
- Technical Skills
|
63 |
- Soft Skills
|
64 |
+
- Education
|
65 |
+
- Experience
|
66 |
- Certifications
|
67 |
+
- Projects (if present)
|
|
|
|
|
|
|
68 |
|
69 |
+
Then, if a job description is provided, highlight what improvements are needed in each section to better align with the job role.
|
70 |
|
71 |
Job Description:
|
72 |
{job_desc if analyze_with_jd else '[None provided]'}
|
|
|
74 |
Resume:
|
75 |
{resume_text}
|
76 |
|
77 |
+
Output your response in markdown format with section headings.
|
78 |
"""
|
79 |
return prompt
|
80 |
|
81 |
+
# Core analysis function
|
82 |
def analyze_resume(job_desc, resume_text, analyze_with_jd):
|
83 |
if not resume_text.strip():
|
84 |
return "β οΈ Please paste your resume text."
|
85 |
|
86 |
+
user_prompt = build_dynamic_prompt(job_desc, resume_text, analyze_with_jd)
|
87 |
|
88 |
try:
|
89 |
+
result = summarizer(user_prompt, max_new_tokens=512, do_sample=False)[0]
|
90 |
+
response_text = result.get('generated_text', result.get('summary_text', str(result))).strip()
|
91 |
|
|
|
92 |
if analyze_with_jd and job_desc:
|
93 |
matched, missing = compare_keywords(resume_text, job_desc)
|
94 |
highlighted_resume = highlight_keywords(resume_text, matched)
|
95 |
llm_missing_keywords = extract_missing_keywords_with_llm(job_desc, resume_text)
|
96 |
|
97 |
+
return f"""### π Resume with Highlighted Matches
|
|
|
98 |
|
99 |
{highlighted_resume}
|
100 |
|
|
|
111 |
|
112 |
---
|
113 |
|
114 |
+
{response_text}"""
|
115 |
+
return response_text
|
|
|
|
|
116 |
except Exception as e:
|
117 |
return f"β Error: {str(e)}"
|
118 |
|
119 |
+
# Gradio interface
|
120 |
def create_ui():
|
121 |
with gr.Blocks() as demo:
|
122 |
with gr.Row():
|
|
|
134 |
|
135 |
if __name__ == '__main__':
|
136 |
create_ui().launch()
|
137 |
+
|