Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,18 +4,17 @@ import re
|
|
4 |
import os
|
5 |
from huggingface_hub import login
|
6 |
import spacy
|
7 |
-
from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
|
8 |
|
9 |
-
# Authenticate
|
10 |
login(token=os.environ.get("HUGGINGFACEHUB_API_TOKEN"))
|
11 |
|
12 |
-
# Load summarization model
|
13 |
summarizer = pipeline("text2text-generation", model="declare-lab/flan-alpaca-base")
|
14 |
|
15 |
-
# Load SpaCy English model
|
16 |
nlp = spacy.load("en_core_web_sm")
|
17 |
|
18 |
-
#
|
19 |
def extract_relevant_keywords(text):
|
20 |
doc = nlp(text.lower())
|
21 |
return set(
|
@@ -23,7 +22,7 @@ def extract_relevant_keywords(text):
|
|
23 |
if token.pos_ in {"NOUN", "PROPN"} and not token.is_stop and len(token.text) > 2
|
24 |
)
|
25 |
|
26 |
-
#
|
27 |
def compare_keywords(resume_text, job_desc):
|
28 |
resume_words = extract_relevant_keywords(resume_text)
|
29 |
job_words = extract_relevant_keywords(job_desc)
|
@@ -31,78 +30,100 @@ def compare_keywords(resume_text, job_desc):
|
|
31 |
missing = job_words - resume_words
|
32 |
return matched, missing
|
33 |
|
34 |
-
#
|
35 |
def highlight_keywords(resume_text, matched):
|
36 |
highlighted = resume_text
|
37 |
for word in sorted(matched, key=len, reverse=True):
|
38 |
highlighted = re.sub(rf"\b({re.escape(word)})\b", r"**\1**", highlighted, flags=re.IGNORECASE)
|
39 |
return highlighted
|
40 |
|
41 |
-
#
|
42 |
def extract_missing_keywords_with_llm(job_desc, resume_text):
|
43 |
prompt = f"""
|
44 |
Given the following job description and resume, list the important skills, tools, and concepts from the job description that are missing or weakly represented in the resume.
|
|
|
45 |
Job Description:
|
46 |
{job_desc}
|
|
|
47 |
Resume:
|
48 |
{resume_text}
|
|
|
49 |
Only list the missing keywords as bullet points.
|
50 |
"""
|
51 |
result = summarizer(prompt, max_new_tokens=300, do_sample=True)[0]
|
52 |
-
return result.get('generated_text',
|
53 |
|
54 |
-
#
|
55 |
def build_dynamic_prompt(job_desc, resume_text, analyze_with_jd):
|
56 |
prompt = f"""
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
Job Description:
|
60 |
{job_desc if analyze_with_jd else '[None provided]'}
|
|
|
61 |
Resume:
|
62 |
{resume_text}
|
63 |
-
|
|
|
64 |
"""
|
65 |
return prompt
|
66 |
|
67 |
-
#
|
68 |
def analyze_resume(job_desc, resume_text, analyze_with_jd):
|
69 |
if not resume_text.strip():
|
70 |
return "β οΈ Please paste your resume text."
|
71 |
|
72 |
-
|
73 |
|
74 |
try:
|
75 |
-
|
76 |
-
|
77 |
|
|
|
78 |
if analyze_with_jd and job_desc:
|
79 |
matched, missing = compare_keywords(resume_text, job_desc)
|
80 |
highlighted_resume = highlight_keywords(resume_text, matched)
|
81 |
llm_missing_keywords = extract_missing_keywords_with_llm(job_desc, resume_text)
|
82 |
|
83 |
-
return f"""
|
|
|
84 |
|
85 |
{highlighted_resume}
|
86 |
|
87 |
---
|
88 |
|
89 |
-
|
90 |
{', '.join(sorted(matched)) or 'None'}
|
91 |
|
92 |
-
|
93 |
{', '.join(sorted(missing)) or 'None'}
|
94 |
|
95 |
-
|
96 |
{llm_missing_keywords}
|
97 |
|
98 |
---
|
99 |
|
100 |
-
{
|
101 |
-
|
|
|
|
|
102 |
except Exception as e:
|
103 |
return f"β Error: {str(e)}"
|
104 |
|
105 |
-
#
|
106 |
def create_ui():
|
107 |
with gr.Blocks() as demo:
|
108 |
with gr.Row():
|
|
|
4 |
import os
|
5 |
from huggingface_hub import login
|
6 |
import spacy
|
|
|
7 |
|
8 |
+
# β
Authenticate using HF token stored in secret
|
9 |
login(token=os.environ.get("HUGGINGFACEHUB_API_TOKEN"))
|
10 |
|
11 |
+
# β
Load summarization model (lightweight and CPU-friendly)
|
12 |
summarizer = pipeline("text2text-generation", model="declare-lab/flan-alpaca-base")
|
13 |
|
14 |
+
# β
Load SpaCy English model for NLP keyword extraction
|
15 |
nlp = spacy.load("en_core_web_sm")
|
16 |
|
17 |
+
# β
Extract keywords (nouns & proper nouns, excluding stopwords)
|
18 |
def extract_relevant_keywords(text):
|
19 |
doc = nlp(text.lower())
|
20 |
return set(
|
|
|
22 |
if token.pos_ in {"NOUN", "PROPN"} and not token.is_stop and len(token.text) > 2
|
23 |
)
|
24 |
|
25 |
+
# β
Match resume keywords with job description
|
26 |
def compare_keywords(resume_text, job_desc):
|
27 |
resume_words = extract_relevant_keywords(resume_text)
|
28 |
job_words = extract_relevant_keywords(job_desc)
|
|
|
30 |
missing = job_words - resume_words
|
31 |
return matched, missing
|
32 |
|
33 |
+
# β
Highlight matched keywords in resume text
|
34 |
def highlight_keywords(resume_text, matched):
|
35 |
highlighted = resume_text
|
36 |
for word in sorted(matched, key=len, reverse=True):
|
37 |
highlighted = re.sub(rf"\b({re.escape(word)})\b", r"**\1**", highlighted, flags=re.IGNORECASE)
|
38 |
return highlighted
|
39 |
|
40 |
+
# β
Use LLM to extract contextually missing skills/tools
|
41 |
def extract_missing_keywords_with_llm(job_desc, resume_text):
|
42 |
prompt = f"""
|
43 |
Given the following job description and resume, list the important skills, tools, and concepts from the job description that are missing or weakly represented in the resume.
|
44 |
+
|
45 |
Job Description:
|
46 |
{job_desc}
|
47 |
+
|
48 |
Resume:
|
49 |
{resume_text}
|
50 |
+
|
51 |
Only list the missing keywords as bullet points.
|
52 |
"""
|
53 |
result = summarizer(prompt, max_new_tokens=300, do_sample=True)[0]
|
54 |
+
return result.get('generated_text', str(result)).strip()
|
55 |
|
56 |
+
# β
Build LLM prompt to extract resume sections + insights
|
57 |
def build_dynamic_prompt(job_desc, resume_text, analyze_with_jd):
|
58 |
prompt = f"""
|
59 |
+
You are a professional resume analyst.
|
60 |
+
|
61 |
+
Classify the content of the resume below into logical sections such as:
|
62 |
+
- Education
|
63 |
+
- Work Experience
|
64 |
+
- Technical Skills
|
65 |
+
- Soft Skills
|
66 |
+
- Certifications
|
67 |
+
- Projects
|
68 |
+
- Achievements
|
69 |
+
|
70 |
+
Use markdown format with headers (###) for each section.
|
71 |
+
|
72 |
+
If a job description is also provided, add relevant suggestions under each section to improve alignment with the job.
|
73 |
+
|
74 |
Job Description:
|
75 |
{job_desc if analyze_with_jd else '[None provided]'}
|
76 |
+
|
77 |
Resume:
|
78 |
{resume_text}
|
79 |
+
|
80 |
+
Return your output in structured markdown format.
|
81 |
"""
|
82 |
return prompt
|
83 |
|
84 |
+
# β
Generate structured LLM output + keyword analysis
|
85 |
def analyze_resume(job_desc, resume_text, analyze_with_jd):
|
86 |
if not resume_text.strip():
|
87 |
return "β οΈ Please paste your resume text."
|
88 |
|
89 |
+
prompt = build_dynamic_prompt(job_desc, resume_text, analyze_with_jd)
|
90 |
|
91 |
try:
|
92 |
+
llm_result = summarizer(prompt, max_new_tokens=512, do_sample=True)[0]
|
93 |
+
structured_response = llm_result.get('generated_text', str(llm_result)).strip()
|
94 |
|
95 |
+
# Perform keyword comparison and highlighting
|
96 |
if analyze_with_jd and job_desc:
|
97 |
matched, missing = compare_keywords(resume_text, job_desc)
|
98 |
highlighted_resume = highlight_keywords(resume_text, matched)
|
99 |
llm_missing_keywords = extract_missing_keywords_with_llm(job_desc, resume_text)
|
100 |
|
101 |
+
return f"""
|
102 |
+
### π Resume with Highlighted Matches
|
103 |
|
104 |
{highlighted_resume}
|
105 |
|
106 |
---
|
107 |
|
108 |
+
**β
Matched Keywords (Semantic Match):**
|
109 |
{', '.join(sorted(matched)) or 'None'}
|
110 |
|
111 |
+
**β Missing Keywords (Semantic Match):**
|
112 |
{', '.join(sorted(missing)) or 'None'}
|
113 |
|
114 |
+
**π€ LLM-Inferred Missing Keywords:**
|
115 |
{llm_missing_keywords}
|
116 |
|
117 |
---
|
118 |
|
119 |
+
{structured_response}
|
120 |
+
"""
|
121 |
+
return structured_response
|
122 |
+
|
123 |
except Exception as e:
|
124 |
return f"β Error: {str(e)}"
|
125 |
|
126 |
+
# β
Gradio UI
|
127 |
def create_ui():
|
128 |
with gr.Blocks() as demo:
|
129 |
with gr.Row():
|