Gemma / app.py
ShubhamD95's picture
Update app.py
3c06ec2 verified
raw
history blame
1.1 kB
from transformers import AutoTokenizer, AutoModelForCausalLM
import os
from huggingface_hub import login
import gradio as gr
# 1. Authenticate with Hugging Face token from secrets
hf_token = os.environ.get("hf_space_token")
login(token=hf_token)
# 2. Load Gemma model and tokenizer (GATED model needs token)
model_name = "google/gemma-3-1b-it"
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_token)
# 3. Define response generation function
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100, do_sample=True, temperature=0.7)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# 4. Create Gradio interface
iface = gr.Interface(
fn=generate_response,
inputs=gr.Textbox(lines=2, placeholder="Ask something..."),
outputs="text",
title="Chat with Gemma",
description="This chatbot is powered by Google's Gemma model running in Hugging Face Spaces."
)
# 5. Launch app
iface.launch()