Spaces:
Sleeping
Sleeping
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import os | |
from huggingface_hub import login | |
import gradio as gr | |
# 1. Authenticate with Hugging Face token from secrets | |
hf_token = os.environ.get("hf_space_token") | |
login(token=hf_token) | |
# 2. Load Gemma model and tokenizer (GATED model needs token) | |
model_name = "google/gemma-3-1b-it" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token) | |
model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_token) | |
# 3. Define response generation function | |
def generate_response(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(**inputs, max_new_tokens=100, do_sample=True, temperature=0.7) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# 4. Create Gradio interface | |
iface = gr.Interface( | |
fn=generate_response, | |
inputs=gr.Textbox(lines=2, placeholder="Ask something..."), | |
outputs="text", | |
title="Chat with Gemma", | |
description="This chatbot is powered by Google's Gemma model running in Hugging Face Spaces." | |
) | |
# 5. Launch app | |
iface.launch() | |