ShubhamD95 commited on
Commit
3c06ec2
·
verified ·
1 Parent(s): f93c703

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -5
app.py CHANGED
@@ -1,13 +1,32 @@
1
  from transformers import AutoTokenizer, AutoModelForCausalLM
2
  import os
3
  from huggingface_hub import login
 
4
 
5
-
6
  hf_token = os.environ.get("hf_space_token")
7
-
8
-
9
  login(token=hf_token)
10
 
 
11
  model_name = "google/gemma-3-1b-it"
12
- tokenizer = AutoTokenizer.from_pretrained(model_name)
13
- model = AutoModelForCausalLM.from_pretrained(model_name)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  from transformers import AutoTokenizer, AutoModelForCausalLM
2
  import os
3
  from huggingface_hub import login
4
+ import gradio as gr
5
 
6
+ # 1. Authenticate with Hugging Face token from secrets
7
  hf_token = os.environ.get("hf_space_token")
 
 
8
  login(token=hf_token)
9
 
10
+ # 2. Load Gemma model and tokenizer (GATED model needs token)
11
  model_name = "google/gemma-3-1b-it"
12
+ tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
13
+ model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_token)
14
+
15
+ # 3. Define response generation function
16
+ def generate_response(prompt):
17
+ inputs = tokenizer(prompt, return_tensors="pt")
18
+ outputs = model.generate(**inputs, max_new_tokens=100, do_sample=True, temperature=0.7)
19
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
20
+
21
+ # 4. Create Gradio interface
22
+ iface = gr.Interface(
23
+ fn=generate_response,
24
+ inputs=gr.Textbox(lines=2, placeholder="Ask something..."),
25
+ outputs="text",
26
+ title="Chat with Gemma",
27
+ description="This chatbot is powered by Google's Gemma model running in Hugging Face Spaces."
28
+ )
29
+
30
+ # 5. Launch app
31
+ iface.launch()
32
+