Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,32 @@
|
|
1 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
import os
|
3 |
from huggingface_hub import login
|
|
|
4 |
|
5 |
-
|
6 |
hf_token = os.environ.get("hf_space_token")
|
7 |
-
|
8 |
-
|
9 |
login(token=hf_token)
|
10 |
|
|
|
11 |
model_name = "google/gemma-3-1b-it"
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
import os
|
3 |
from huggingface_hub import login
|
4 |
+
import gradio as gr
|
5 |
|
6 |
+
# 1. Authenticate with Hugging Face token from secrets
|
7 |
hf_token = os.environ.get("hf_space_token")
|
|
|
|
|
8 |
login(token=hf_token)
|
9 |
|
10 |
+
# 2. Load Gemma model and tokenizer (GATED model needs token)
|
11 |
model_name = "google/gemma-3-1b-it"
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_token)
|
14 |
+
|
15 |
+
# 3. Define response generation function
|
16 |
+
def generate_response(prompt):
|
17 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
18 |
+
outputs = model.generate(**inputs, max_new_tokens=100, do_sample=True, temperature=0.7)
|
19 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
20 |
+
|
21 |
+
# 4. Create Gradio interface
|
22 |
+
iface = gr.Interface(
|
23 |
+
fn=generate_response,
|
24 |
+
inputs=gr.Textbox(lines=2, placeholder="Ask something..."),
|
25 |
+
outputs="text",
|
26 |
+
title="Chat with Gemma",
|
27 |
+
description="This chatbot is powered by Google's Gemma model running in Hugging Face Spaces."
|
28 |
+
)
|
29 |
+
|
30 |
+
# 5. Launch app
|
31 |
+
iface.launch()
|
32 |
+
|