Spaces:
Sleeping
Sleeping
import gradio as gr | |
from keybert import KeyBERT | |
from sentence_transformers import SentenceTransformer | |
# β Load Hugging Face model (no API key needed) | |
model = SentenceTransformer('all-MiniLM-L6-v2') | |
kw_model = KeyBERT(model) | |
# π Keyword extraction function | |
def extract_keywords(job_desc, resume_text, analyze_with_jd): | |
if not resume_text.strip(): | |
return "Please paste your resume." | |
text = job_desc + "\n\n" + resume_text if analyze_with_jd and job_desc else resume_text | |
keywords = kw_model.extract_keywords(text, top_n=10, stop_words='english') | |
return ", ".join([kw for kw, _ in keywords]) if keywords else "No keywords found." | |
# ποΈ Gradio UI | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
analyze_checkbox = gr.Checkbox(label="Analyze with Job Description", value=True) | |
job_desc = gr.Textbox(label="Job Description", lines=6, placeholder="Paste job description here...") | |
resume_text = gr.Textbox(label="Resume Text", lines=12, placeholder="Paste resume content here...") | |
with gr.Column(): | |
output_keywords = gr.Textbox(label="Extracted Keywords", lines=12) | |
resume_text.change(fn=extract_keywords, inputs=[job_desc, resume_text, analyze_checkbox], outputs=output_keywords) | |
job_desc.change(fn=extract_keywords, inputs=[job_desc, resume_text, analyze_checkbox], outputs=output_keywords) | |
demo.launch() | |