Spaces:
Sleeping
Sleeping
File size: 1,425 Bytes
3c06ec2 50c02b0 f93c703 50c02b0 1ab7e62 50c02b0 ed9c544 50c02b0 3c06ec2 50c02b0 1ab7e62 ed9c544 5c93693 ed9c544 5c93693 ed9c544 5c93693 ed9c544 50c02b0 3c06ec2 1ab7e62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import gradio as gr
from keybert import KeyBERT
from sentence_transformers import SentenceTransformer
# β
Load Hugging Face model (no API key needed)
model = SentenceTransformer('all-MiniLM-L6-v2')
kw_model = KeyBERT(model)
# π Keyword extraction function
def extract_keywords(job_desc, resume_text, analyze_with_jd):
if not resume_text.strip():
return "Please paste your resume."
text = job_desc + "\n\n" + resume_text if analyze_with_jd and job_desc else resume_text
keywords = kw_model.extract_keywords(text, top_n=10, stop_words='english')
return ", ".join([kw for kw, _ in keywords]) if keywords else "No keywords found."
# ποΈ Gradio UI
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
analyze_checkbox = gr.Checkbox(label="Analyze with Job Description", value=True)
job_desc = gr.Textbox(label="Job Description", lines=6, placeholder="Paste job description here...")
resume_text = gr.Textbox(label="Resume Text", lines=12, placeholder="Paste resume content here...")
with gr.Column():
output_keywords = gr.Textbox(label="Extracted Keywords", lines=12)
resume_text.change(fn=extract_keywords, inputs=[job_desc, resume_text, analyze_checkbox], outputs=output_keywords)
job_desc.change(fn=extract_keywords, inputs=[job_desc, resume_text, analyze_checkbox], outputs=output_keywords)
demo.launch()
|