Update app.py
#2
by
Dddixyy
- opened
app.py
CHANGED
@@ -3,120 +3,335 @@ import tensorflow as tf
|
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
import cv2
|
6 |
-
from huggingface_hub import
|
|
|
7 |
|
8 |
-
#
|
9 |
@st.cache_resource
|
10 |
def load_keras_model():
|
11 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
try:
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
return model
|
16 |
-
|
17 |
-
|
18 |
-
st.
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
# --- Helper Functions ---
|
22 |
def load_image(image_file):
|
23 |
-
"""Loads an image from a file path or uploaded file object."""
|
24 |
img = Image.open(image_file)
|
25 |
return img
|
26 |
|
27 |
def convert_one_channel(img_array):
|
28 |
-
"""
|
29 |
-
# If image has 3 channels (like BGR or RGB), convert to grayscale.
|
30 |
if len(img_array.shape) > 2 and img_array.shape[2] > 1:
|
31 |
img_array = cv2.cvtColor(img_array, cv2.COLOR_BGR2GRAY)
|
32 |
return img_array
|
33 |
|
34 |
def convert_rgb(img_array):
|
35 |
-
"""
|
36 |
-
# If image is grayscale, convert to RGB to draw colored contours.
|
37 |
if len(img_array.shape) == 2:
|
38 |
img_array = cv2.cvtColor(img_array, cv2.COLOR_GRAY2RGB)
|
39 |
return img_array
|
40 |
|
41 |
# --- Streamlit App Layout ---
|
42 |
-
st.
|
|
|
43 |
|
44 |
-
link = 'Check
|
45 |
st.markdown(link, unsafe_allow_html=True)
|
46 |
|
47 |
# Load the model and stop the app if it fails
|
48 |
model = load_keras_model()
|
49 |
if model is None:
|
50 |
-
st.warning("
|
51 |
st.stop()
|
52 |
|
53 |
-
# --- Image Selection Section ---
|
54 |
-
st.subheader("Upload a
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
image_file = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"])
|
56 |
|
57 |
st.write("---")
|
58 |
st.write("Or choose an example:")
|
59 |
-
|
60 |
-
|
61 |
|
62 |
-
|
63 |
-
with
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
if st.button('Use Example 2'):
|
71 |
-
image_file = examples[1]
|
72 |
|
73 |
-
|
74 |
-
st.image(examples[2], caption='Example 3', use_column_width=True)
|
75 |
-
if st.button('Use Example 3'):
|
76 |
-
image_file = examples[2]
|
77 |
-
|
78 |
-
# --- Processing and Prediction Section ---
|
79 |
if image_file is not None:
|
80 |
st.write("---")
|
|
|
81 |
|
82 |
-
# Load and display the selected image
|
83 |
original_pil_img = load_image(image_file)
|
84 |
-
st.image(original_pil_img, caption="Original Image", use_column_width=True)
|
85 |
|
86 |
-
with
|
87 |
-
|
|
|
|
|
88 |
original_np_img = np.array(original_pil_img)
|
89 |
-
|
90 |
-
# 1. Pre-
|
91 |
img_gray = convert_one_channel(original_np_img.copy())
|
92 |
img_resized = cv2.resize(img_gray, (512, 512), interpolation=cv2.INTER_LANCZOS4)
|
93 |
img_normalized = np.float32(img_resized / 255.0)
|
94 |
-
|
95 |
-
|
96 |
-
# 2. Make prediction
|
97 |
-
prediction = model.predict(img_input)
|
98 |
|
99 |
-
#
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
mask_8bit = (resized_mask * 255).astype(np.uint8)
|
105 |
_, final_mask = cv2.threshold(mask_8bit, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
106 |
|
107 |
-
# Clean
|
108 |
kernel = np.ones((5, 5), dtype=np.uint8)
|
109 |
-
final_mask = cv2.morphologyEx(final_mask, cv2.MORPH_OPEN, kernel, iterations=
|
110 |
-
final_mask = cv2.morphologyEx(final_mask, cv2.MORPH_CLOSE, kernel, iterations=
|
111 |
|
112 |
# Find contours on the final mask
|
113 |
contours, _ = cv2.findContours(final_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
114 |
|
115 |
-
# Draw contours on a color version of the original image
|
116 |
img_for_drawing = convert_rgb(original_np_img.copy())
|
117 |
-
output_image = cv2.drawContours(img_for_drawing, contours, -1, (255, 0, 0), 3)
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
|
122 |
-
|
|
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
import cv2
|
6 |
+
from huggingface_hub import snapshot_download
|
7 |
+
import traceback
|
8 |
|
9 |
+
# --- Model Loading Function (COMPATIBILITY FOCUSED) ---
|
10 |
@st.cache_resource
|
11 |
def load_keras_model():
|
12 |
+
"""
|
13 |
+
Loads a TensorFlow SavedModel, handling compatibility issues
|
14 |
+
with legacy optimizers and Keras 3.
|
15 |
+
"""
|
16 |
+
model_repo = "SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net"
|
17 |
+
model_path = snapshot_download(repo_id=model_repo)
|
18 |
+
st.info(f"Model downloaded to: {model_path}")
|
19 |
+
|
20 |
+
# Approach 1: Loading with tf.compat.v1 for legacy compatibility
|
21 |
+
st.info("Attempt 1: Loading with tf.compat.v1...")
|
22 |
try:
|
23 |
+
import tensorflow.compat.v1 as tf_v1
|
24 |
+
tf_v1.disable_v2_behavior()
|
25 |
+
|
26 |
+
# Create a persistent session that doesn't close
|
27 |
+
sess = tf_v1.Session()
|
28 |
+
|
29 |
+
# Load the meta graph
|
30 |
+
tf_v1.saved_model.loader.load(sess, ['serve'], model_path)
|
31 |
+
|
32 |
+
# Find input and output tensors
|
33 |
+
input_tensor = sess.graph.get_tensor_by_name('serving_default_input_1:0')
|
34 |
+
output_tensor = sess.graph.get_tensor_by_name('StatefulPartitionedCall:0')
|
35 |
+
|
36 |
+
class TFv1ModelWrapper:
|
37 |
+
def __init__(self, sess, input_tensor, output_tensor):
|
38 |
+
self.sess = sess
|
39 |
+
self.input_tensor = input_tensor
|
40 |
+
self.output_tensor = output_tensor
|
41 |
+
|
42 |
+
def predict(self, input_data):
|
43 |
+
# Convert input to numpy array
|
44 |
+
if hasattr(input_data, 'numpy'):
|
45 |
+
# If it's an EagerTensor, use .numpy()
|
46 |
+
input_data = input_data.numpy()
|
47 |
+
elif isinstance(input_data, tf.Tensor):
|
48 |
+
# If it's a SymbolicTensor or other tensor type, use tf.Session.run
|
49 |
+
with tf_v1.Session() as temp_sess:
|
50 |
+
input_data = temp_sess.run(input_data)
|
51 |
+
elif not isinstance(input_data, np.ndarray):
|
52 |
+
# Convert to numpy array if it isn't already
|
53 |
+
input_data = np.array(input_data)
|
54 |
+
|
55 |
+
# Run prediction
|
56 |
+
result = self.sess.run(self.output_tensor,
|
57 |
+
feed_dict={self.input_tensor: input_data})
|
58 |
+
return result
|
59 |
+
|
60 |
+
def __del__(self):
|
61 |
+
# Close the session when the object is deleted
|
62 |
+
try:
|
63 |
+
if hasattr(self, 'sess') and self.sess is not None:
|
64 |
+
self.sess.close()
|
65 |
+
except:
|
66 |
+
pass
|
67 |
+
|
68 |
+
model = TFv1ModelWrapper(sess, input_tensor, output_tensor)
|
69 |
+
st.success("Model loaded successfully using tf.compat.v1!")
|
70 |
return model
|
71 |
+
|
72 |
+
except Exception as e1:
|
73 |
+
st.warning(f"Attempt 1 failed: {e1}")
|
74 |
+
|
75 |
+
# Approach 2: Loading with signature inspection
|
76 |
+
st.info("Attempt 2: Loading with signature inspection...")
|
77 |
+
try:
|
78 |
+
# Load just to inspect the signatures
|
79 |
+
loaded_model = tf.saved_model.load(model_path)
|
80 |
+
|
81 |
+
# Get information about the signatures
|
82 |
+
signatures = loaded_model.signatures
|
83 |
+
st.info(f"Available signatures: {list(signatures.keys())}")
|
84 |
+
|
85 |
+
if signatures:
|
86 |
+
# Use the first available signature
|
87 |
+
signature_key = list(signatures.keys())[0]
|
88 |
+
signature = signatures[signature_key]
|
89 |
+
|
90 |
+
class SignatureModelWrapper:
|
91 |
+
def __init__(self, signature):
|
92 |
+
self.signature = signature
|
93 |
+
|
94 |
+
def predict(self, input_data):
|
95 |
+
# Convert input to numpy array before converting to tensor
|
96 |
+
if hasattr(input_data, 'numpy'):
|
97 |
+
input_data = input_data.numpy()
|
98 |
+
elif isinstance(input_data, tf.Tensor):
|
99 |
+
# For SymbolicTensor, try to evaluate it
|
100 |
+
try:
|
101 |
+
input_data = tf.keras.backend.eval(input_data)
|
102 |
+
except:
|
103 |
+
# If it fails, convert to numpy using a different approach
|
104 |
+
input_data = np.array(input_data)
|
105 |
+
|
106 |
+
# Now convert to a TensorFlow tensor
|
107 |
+
if not isinstance(input_data, tf.Tensor):
|
108 |
+
input_data = tf.convert_to_tensor(input_data, dtype=tf.float32)
|
109 |
+
|
110 |
+
# Get the name of the first input
|
111 |
+
input_specs = self.signature.structured_input_signature[1]
|
112 |
+
input_name = list(input_specs.keys())[0]
|
113 |
+
|
114 |
+
# Run prediction
|
115 |
+
result = self.signature(**{input_name: input_data})
|
116 |
+
|
117 |
+
# Handle output
|
118 |
+
if isinstance(result, dict):
|
119 |
+
result = list(result.values())[0]
|
120 |
+
|
121 |
+
return result
|
122 |
+
|
123 |
+
model = SignatureModelWrapper(signature)
|
124 |
+
st.success(f"Model loaded successfully using signature: {signature_key}!")
|
125 |
+
return model
|
126 |
+
else:
|
127 |
+
raise Exception("No signatures found in the model")
|
128 |
+
|
129 |
+
except Exception as e2:
|
130 |
+
st.warning(f"Attempt 2 failed: {e2}")
|
131 |
+
|
132 |
+
# Approach 3: Creation of an alternative model
|
133 |
+
st.info("Attempt 3: Creating an alternative U-Net model...")
|
134 |
+
try:
|
135 |
+
# Create a simple U-Net model as a fallback
|
136 |
+
def create_unet_model(input_shape=(512, 512, 1)):
|
137 |
+
inputs = tf.keras.layers.Input(shape=input_shape)
|
138 |
+
|
139 |
+
# Encoder
|
140 |
+
c1 = tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(inputs)
|
141 |
+
c1 = tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(c1)
|
142 |
+
p1 = tf.keras.layers.MaxPooling2D((2, 2))(c1)
|
143 |
+
|
144 |
+
c2 = tf.keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same')(p1)
|
145 |
+
c2 = tf.keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same')(c2)
|
146 |
+
p2 = tf.keras.layers.MaxPooling2D((2, 2))(c2)
|
147 |
+
|
148 |
+
c3 = tf.keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same')(p2)
|
149 |
+
c3 = tf.keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same')(c3)
|
150 |
+
p3 = tf.keras.layers.MaxPooling2D((2, 2))(c3)
|
151 |
+
|
152 |
+
c4 = tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same')(p3)
|
153 |
+
c4 = tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same')(c4)
|
154 |
+
p4 = tf.keras.layers.MaxPooling2D((2, 2))(c4)
|
155 |
+
|
156 |
+
# Bottleneck
|
157 |
+
c5 = tf.keras.layers.Conv2D(1024, (3, 3), activation='relu', padding='same')(p4)
|
158 |
+
c5 = tf.keras.layers.Conv2D(1024, (3, 3), activation='relu', padding='same')(c5)
|
159 |
+
|
160 |
+
# Decoder
|
161 |
+
u6 = tf.keras.layers.Conv2DTranspose(512, (2, 2), strides=(2, 2), padding='same')(c5)
|
162 |
+
u6 = tf.keras.layers.concatenate([u6, c4])
|
163 |
+
c6 = tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same')(u6)
|
164 |
+
c6 = tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same')(c6)
|
165 |
+
|
166 |
+
u7 = tf.keras.layers.Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(c6)
|
167 |
+
u7 = tf.keras.layers.concatenate([u7, c3])
|
168 |
+
c7 = tf.keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same')(u7)
|
169 |
+
c7 = tf.keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same')(c7)
|
170 |
+
|
171 |
+
u8 = tf.keras.layers.Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(c7)
|
172 |
+
u8 = tf.keras.layers.concatenate([u8, c2])
|
173 |
+
c8 = tf.keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same')(u8)
|
174 |
+
c8 = tf.keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same')(c8)
|
175 |
+
|
176 |
+
u9 = tf.keras.layers.Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(c8)
|
177 |
+
u9 = tf.keras.layers.concatenate([u9, c1])
|
178 |
+
c9 = tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(u9)
|
179 |
+
c9 = tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(c9)
|
180 |
+
|
181 |
+
outputs = tf.keras.layers.Conv2D(1, (1, 1), activation='sigmoid')(c9)
|
182 |
+
|
183 |
+
model = tf.keras.models.Model(inputs=[inputs], outputs=[outputs])
|
184 |
+
return model
|
185 |
+
|
186 |
+
# Create the alternative model
|
187 |
+
alt_model = create_unet_model()
|
188 |
+
|
189 |
+
# Initialize with random weights (it won't be accurate but it will be functional)
|
190 |
+
st.warning("WARNING: Using an alternative U-Net model with random weights.")
|
191 |
+
st.warning("This model will not produce accurate results but serves to test the interface.")
|
192 |
+
|
193 |
+
return alt_model
|
194 |
+
|
195 |
+
except Exception as e3:
|
196 |
+
st.error("All loading attempts have failed.")
|
197 |
+
st.error("Errors encountered:")
|
198 |
+
st.error(f"1. tf.compat.v1: {e1}")
|
199 |
+
st.error(f"2. Signature inspection: {e2}")
|
200 |
+
st.error(f"3. Alternative model: {e3}")
|
201 |
+
|
202 |
+
st.info("Recommended solutions:")
|
203 |
+
st.info("1. Use an environment with TensorFlow 2.5 or compatible versions")
|
204 |
+
st.info("2. Look for an updated version of the model")
|
205 |
+
st.info("3. Contact the author for a version compatible with Keras 3")
|
206 |
+
|
207 |
+
return None
|
208 |
|
209 |
+
# --- Helper Functions (unchanged) ---
|
210 |
def load_image(image_file):
|
211 |
+
"""Loads an image from a file path or an uploaded file object."""
|
212 |
img = Image.open(image_file)
|
213 |
return img
|
214 |
|
215 |
def convert_one_channel(img_array):
|
216 |
+
"""Ensures the image is single-channel (grayscale)."""
|
|
|
217 |
if len(img_array.shape) > 2 and img_array.shape[2] > 1:
|
218 |
img_array = cv2.cvtColor(img_array, cv2.COLOR_BGR2GRAY)
|
219 |
return img_array
|
220 |
|
221 |
def convert_rgb(img_array):
|
222 |
+
"""Ensures the image is 3-channel (RGB) for drawing contours."""
|
|
|
223 |
if len(img_array.shape) == 2:
|
224 |
img_array = cv2.cvtColor(img_array, cv2.COLOR_GRAY2RGB)
|
225 |
return img_array
|
226 |
|
227 |
# --- Streamlit App Layout ---
|
228 |
+
st.set_page_config(layout="wide")
|
229 |
+
st.header("Segmentation of Teeth in Panoramic X-rays with U-Net")
|
230 |
|
231 |
+
link = 'Check out our Repo on Github! [link](https://github.com/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net)'
|
232 |
st.markdown(link, unsafe_allow_html=True)
|
233 |
|
234 |
# Load the model and stop the app if it fails
|
235 |
model = load_keras_model()
|
236 |
if model is None:
|
237 |
+
st.warning("The model could not be loaded. The application cannot proceed.")
|
238 |
st.stop()
|
239 |
|
240 |
+
# --- Image Selection Section (unchanged) ---
|
241 |
+
st.subheader("Upload a Panoramic X-ray or Select an Example")
|
242 |
+
|
243 |
+
# Use local paths for the example images
|
244 |
+
example_image_paths = {
|
245 |
+
"Example 1": "107.png",
|
246 |
+
"Example 2": "108.png",
|
247 |
+
"Example 3": "109.png"
|
248 |
+
}
|
249 |
+
|
250 |
image_file = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"])
|
251 |
|
252 |
st.write("---")
|
253 |
st.write("Or choose an example:")
|
254 |
+
cols = st.columns(len(example_image_paths))
|
255 |
+
selected_example = None
|
256 |
|
257 |
+
for i, (caption, path) in enumerate(example_image_paths.items()):
|
258 |
+
with cols[i]:
|
259 |
+
try:
|
260 |
+
st.image(path, caption=caption, use_container_width=True)
|
261 |
+
if st.button(f'Use {caption}'):
|
262 |
+
selected_example = path
|
263 |
+
except Exception:
|
264 |
+
st.error(f"Example image '{path}' not found. Make sure 107.png, 108.png, and 109.png are in the same directory as the script.")
|
265 |
|
266 |
+
if selected_example:
|
267 |
+
image_file = selected_example
|
|
|
|
|
268 |
|
269 |
+
# --- Processing and Prediction Section (FIXED) ---
|
|
|
|
|
|
|
|
|
|
|
270 |
if image_file is not None:
|
271 |
st.write("---")
|
272 |
+
col1, col2 = st.columns(2)
|
273 |
|
|
|
274 |
original_pil_img = load_image(image_file)
|
|
|
275 |
|
276 |
+
with col1:
|
277 |
+
st.image(original_pil_img, caption="Original Image", use_container_width=True)
|
278 |
+
|
279 |
+
with st.spinner("Analyzing the image and predicting segmentation..."):
|
280 |
original_np_img = np.array(original_pil_img)
|
281 |
+
|
282 |
+
# 1. Pre-processing for the model
|
283 |
img_gray = convert_one_channel(original_np_img.copy())
|
284 |
img_resized = cv2.resize(img_gray, (512, 512), interpolation=cv2.INTER_LANCZOS4)
|
285 |
img_normalized = np.float32(img_resized / 255.0)
|
286 |
+
img_input_np = np.reshape(img_normalized, (1, 512, 512, 1))
|
|
|
|
|
|
|
287 |
|
288 |
+
# 2. Run the prediction using the wrapper model
|
289 |
+
try:
|
290 |
+
# DO NOT convert to TensorFlow tensor - pass the numpy array directly
|
291 |
+
prediction = model.predict(img_input_np)
|
292 |
+
|
293 |
+
# Convert the result to a numpy array if it is a tensor
|
294 |
+
if hasattr(prediction, 'numpy'):
|
295 |
+
prediction = prediction.numpy()
|
296 |
+
|
297 |
+
except Exception as e:
|
298 |
+
st.error(f"Prediction failed. Error: {e}")
|
299 |
+
st.code(traceback.format_exc())
|
300 |
+
st.stop()
|
301 |
|
302 |
+
# 3. Post-processing of the prediction mask
|
303 |
+
# Handle the case where prediction might have different dimensions
|
304 |
+
if len(prediction.shape) == 4:
|
305 |
+
predicted_mask = prediction[0] # Batch dimension
|
306 |
+
else:
|
307 |
+
predicted_mask = prediction
|
308 |
+
|
309 |
+
# If the mask has more than 2 dimensions, take the first channel
|
310 |
+
if len(predicted_mask.shape) > 2:
|
311 |
+
predicted_mask = predicted_mask[:, :, 0]
|
312 |
+
|
313 |
+
# Resize the mask to the original image dimensions
|
314 |
+
resized_mask = cv2.resize(predicted_mask,
|
315 |
+
(original_np_img.shape[1], original_np_img.shape[0]),
|
316 |
+
interpolation=cv2.INTER_LANCZOS4)
|
317 |
+
|
318 |
+
# Binarize the mask with Otsu's threshold for a clean result
|
319 |
mask_8bit = (resized_mask * 255).astype(np.uint8)
|
320 |
_, final_mask = cv2.threshold(mask_8bit, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
321 |
|
322 |
+
# Clean the mask with morphological operations to remove noise
|
323 |
kernel = np.ones((5, 5), dtype=np.uint8)
|
324 |
+
final_mask = cv2.morphologyEx(final_mask, cv2.MORPH_OPEN, kernel, iterations=2)
|
325 |
+
final_mask = cv2.morphologyEx(final_mask, cv2.MORPH_CLOSE, kernel, iterations=2)
|
326 |
|
327 |
# Find contours on the final mask
|
328 |
contours, _ = cv2.findContours(final_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
329 |
|
330 |
+
# Draw the contours on a color version of the original image
|
331 |
img_for_drawing = convert_rgb(original_np_img.copy())
|
332 |
+
output_image = cv2.drawContours(img_for_drawing, contours, -1, (255, 0, 0), 3) # Red contours
|
333 |
+
|
334 |
+
with col2:
|
335 |
+
st.image(output_image, caption="Image with Segmented Teeth", use_container_width=True)
|
336 |
|
337 |
+
st.success("Prediction complete!")
|