TetherSST / app.py
SamanthaStorm's picture
Update app.py
3cc85b8 verified
raw
history blame
9.14 kB
import gradio as gr
import torch
from transformers import pipeline as hf_pipeline, AutoModelForSequenceClassification, AutoTokenizer
from PIL import Image
import pytesseract
import io
# ——— 1) Emotion Pipeline ————————————————————————————————————————————————
emotion_pipeline = hf_pipeline(
"text-classification",
model="j-hartmann/emotion-english-distilroberta-base",
top_k=None,
truncation=True
)
def get_emotion_profile(text):
"""
Returns a dict of emotion scores for the input text.
"""
results = emotion_pipeline(text)
# Some pipelines return a list of lists
if isinstance(results, list) and isinstance(results[0], list):
results = results[0]
return {r["label"].lower(): round(r["score"], 3) for r in results}
# apology keywords for pleading concern
APOLOGY_KEYWORDS = ["sorry", "apolog", "forgive"]
# ——— 2) Abuse-Patterns Model ——————————————————————————————————————————————
model_name = "SamanthaStorm/tether-multilabel-v3"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
LABELS = [
"blame shifting", "contradictory statements", "control", "dismissiveness",
"gaslighting", "guilt tripping", "insults", "obscure language",
"projection", "recovery phase", "threat"
]
THRESHOLDS = {
"blame shifting": 0.28,
"contradictory statements": 0.27,
"control": 0.08,
"dismissiveness": 0.32,
"gaslighting": 0.27,
"guilt tripping": 0.31,
"insults": 0.10,
"obscure language": 0.55,
"projection": 0.09,
"recovery phase": 0.33,
"threat": 0.15
}
# ——— 3) Emotional-Tone Tagging —————————————————————————————————————————————
def get_emotional_tone_tag(emotion_profile, patterns, text_lower):
"""
Assigns one of 18 nuanced tone categories based on emotion scores, patterns, and text.
"""
sadness = emotion_profile.get("sadness", 0)
joy = emotion_profile.get("joy", 0)
neutral = emotion_profile.get("neutral", 0)
disgust = emotion_profile.get("disgust", 0)
anger = emotion_profile.get("anger", 0)
fear = emotion_profile.get("fear", 0)
surprise = emotion_profile.get("surprise", 0)
def get_emotional_tone_tag(emotion_profile, patterns, text_lower):
if "support" in text_lower or "hope" in text_lower or "grace" in text_lower:
return "supportive"
if (
sadness > 0.4 and
any(p in patterns for p in ["blame shifting", "guilt tripping", "recovery phase"])
):
return "performative regret"
# 2. Coercive Warmth
if (
(joy > 0.3 or sadness > 0.4) and
any(p in patterns for p in ["control", "gaslighting"])
):
return "coercive warmth"
# 3. Cold Invalidation
if (
(neutral + disgust) > 0.5 and
any(p in patterns for p in ["dismissiveness", "projection", "obscure language"])
):
return "cold invalidation"
# 4. Genuine Vulnerability
if (
(sadness + fear) > 0.5 and
all(p == "recovery phase" for p in patterns)
):
return "genuine vulnerability"
# 5. Emotional Threat
if (
(anger + disgust) > 0.5 and
any(p in patterns for p in ["control", "threat", "insults", "dismissiveness"])
):
return "emotional threat"
# 6. Weaponized Sadness
if (
sadness > 0.6 and
any(p in patterns for p in ["guilt tripping", "projection"])
):
return "weaponized sadness"
# 7. Toxic Resignation
if (
neutral > 0.5 and
any(p in patterns for p in ["dismissiveness", "obscure language"])
):
return "toxic resignation"
# 8. Indignant Reproach
if (
anger > 0.5 and
any(p in patterns for p in ["guilt tripping", "contradictory statements"])
):
return "indignant reproach"
# 9. Confrontational
if anger > 0.6 and patterns:
return "confrontational"
# 10. Passive Aggression
if (
neutral > 0.6 and
any(p in patterns for p in ["dismissiveness", "projection"])
):
return "passive aggression"
# 11. Sarcastic Mockery
if joy > 0.3 and "insults" in patterns:
return "sarcastic mockery"
# 12. Menacing Threat
if fear > 0.3 and "threat" in patterns:
return "menacing threat"
# 13. Pleading Concern
if (
sadness > 0.3 and
any(k in text_lower for k in APOLOGY_KEYWORDS) and
not patterns
):
return "pleading concern"
# 14. Fear-mongering
if (fear + disgust) > 0.5 and "projection" in patterns:
return "fear-mongering"
# 15. Disbelieving Accusation
if surprise > 0.3 and "blame shifting" in patterns:
return "disbelieving accusation"
# 16. Empathetic Solidarity
if joy > 0.2 and sadness > 0.2 and not patterns:
return "empathetic solidarity"
# 17. Assertive Boundary
if anger > 0.4 and "control" in patterns:
return "assertive boundary"
# 18. Stonewalling
if neutral > 0.7 and not patterns:
return "stonewalling"
return None
# ——— 4) Single-message Analysis ———————————————————————————————————————————
def analyze_message(text):
text_lower = text.lower()
# 1) Emotion
emotion_profile = get_emotion_profile(text)
# 2) Patterns
toks = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
logits = model(**toks).logits.squeeze(0)
scores = torch.sigmoid(logits).cpu().numpy()
active_patterns = [lab for lab, sc in zip(LABELS, scores) if sc >= THRESHOLDS[lab]]
# append recovery-phase if apology
if any(k in text_lower for k in APOLOGY_KEYWORDS) and "recovery phase" not in active_patterns:
active_patterns.append("recovery phase")
# 3) Tone
tone_tag = get_emotional_tone_tag(emotion_profile, active_patterns, text_lower)
return {
"emotion_profile": emotion_profile,
"active_patterns": active_patterns,
"tone_tag": tone_tag
}
# ——— 5) Composite Wrapper ————————————————————————————————————————————————
def analyze_composite(uploaded_file, *texts):
outputs = []
# 1) File upload
if uploaded_file is not None:
# uploaded_file may be a file-like with .read(), or just a path string
try:
raw = uploaded_file.read()
except Exception:
# fall back to treating uploaded_file as a filesystem path
with open(uploaded_file, "rb") as f:
raw = f.read()
# get the filename (or just use the string if no .name attr)
name = (
uploaded_file.name.lower()
if hasattr(uploaded_file, "name")
else uploaded_file.lower()
)
# now branch on extension
if name.endswith((".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".gif")):
img = Image.open(io.BytesIO(raw))
content = pytesseract.image_to_string(img)
else:
try:
content = raw.decode("utf-8")
except UnicodeDecodeError:
content = raw.decode("latin-1")
r = analyze_message(content)
outputs.append(
"── Uploaded File ──\n"
f"Emotion Profile : {r['emotion_profile']}\n"
f"Active Patterns : {r['active_patterns']}\n"
f"Emotional Tone : {r['tone_tag']}\n"
)
# 2) Text‐box inputs…
for idx, txt in enumerate(texts, start=1):
if not txt:
continue
r = analyze_message(txt)
outputs.append(
f"── Message {idx} ──\n"
f"Emotion Profile : {r['emotion_profile']}\n"
f"Active Patterns : {r['active_patterns']}\n"
f"Emotional Tone : {r['tone_tag']}\n"
)
if not outputs:
return "Please enter at least one message."
return "\n".join(outputs)
# ——— 6) Gradio Interface ————————————————————————————————————————————————
message_inputs = [gr.Textbox(label=f"Message {i+1}") for i in range(1)]
iface = gr.Interface(
fn=analyze_composite,
inputs=[gr.File(file_types=[".txt", ".png", ".jpg", ".jpeg"], label="Upload text or image")] + message_inputs,
outputs=gr.Textbox(label="Analysis"),
title="Tether Analyzer (extended tone tags)",
description="Emotion profiling, pattern tags, and a wide set of nuanced tone categories—no abuse score or DARVO."
)
if __name__ == "__main__":
iface.launch()