File size: 6,429 Bytes
239a968
70ce6b1
 
cd900c5
 
 
fe6b66c
70ce6b1
fe6b66c
 
 
 
 
 
 
 
70ce6b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd900c5
93ddbae
f9903fd
93ddbae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd900c5
93ddbae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70ce6b1
cd900c5
834f0ff
cd900c5
70ce6b1
 
cd900c5
70ce6b1
 
 
 
 
cd900c5
 
 
 
 
70ce6b1
cd900c5
f9903fd
cd900c5
70ce6b1
cd900c5
 
 
 
70ce6b1
 
cd900c5
93ddbae
70ce6b1
93ddbae
cd900c5
93ddbae
 
 
 
 
 
 
 
 
 
 
 
 
76dedd8
 
cd900c5
 
 
76dedd8
93ddbae
cd900c5
70ce6b1
76dedd8
 
 
93ddbae
70ce6b1
cd900c5
 
 
76dedd8
 
 
 
93ddbae
76dedd8
834f0ff
cd900c5
93ddbae
70ce6b1
239a968
fe6b66c
70ce6b1
cd900c5
70ce6b1
cd900c5
 
fe6b66c
 
70ce6b1
cd900c5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import gradio as gr
import torch
from transformers import pipeline as hf_pipeline, AutoModelForSequenceClassification, AutoTokenizer
from PIL import Image
import pytesseract
import io

# ——— 1) Emotion Pipeline ————————————————————————————————————————————————
emotion_pipeline = hf_pipeline(
    "text-classification",
    model="j-hartmann/emotion-english-distilroberta-base",
    top_k=None,
    truncation=True
)

def get_emotion_profile(text):
    results = emotion_pipeline(text)
    if isinstance(results, list) and isinstance(results[0], list):
        results = results[0]
    return {r["label"].lower(): round(r["score"], 3) for r in results}


# ——— 2) Abuse-patterns Model ——————————————————————————————————————————————
model_name = "SamanthaStorm/tether-multilabel-v3"
model     = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)

LABELS = [
    "blame shifting", "contradictory statements", "control", "dismissiveness",
    "gaslighting", "guilt tripping", "insults", "obscure language",
    "projection", "recovery phase", "threat"
]

THRESHOLDS = {
    "blame shifting": 0.28, "contradictory statements": 0.27, "control": 0.08, "dismissiveness": 0.32,
    "gaslighting":     0.27, "guilt tripping":           0.31, "insults":  0.10, "obscure language": 0.55,
    "projection":      0.09, "recovery phase":           0.33, "threat":    0.15
}


# ——— 3) Emotional-tone tagging (no abuse_score / DARVO) —————————————————————————————
def get_emotional_tone_tag(emotion_profile, patterns):
    anger   = emotion_profile.get("anger",   0)
    disgust = emotion_profile.get("disgust", 0)
    sadness = emotion_profile.get("sadness", 0)
    joy     = emotion_profile.get("joy",     0)
    neutral = emotion_profile.get("neutral", 0)
    fear    = emotion_profile.get("fear",    0)

    # 1) Vulnerable: sadness high + recovery-phase
    if sadness > 0.4 and "recovery phase" in patterns:
        return "vulnerable"

    # 2) Supportive: joy very high + no other patterns (or only recovery-phase)
    if joy > 0.5 and (not patterns or patterns == ["recovery phase"]):
        return "supportive"

    # 3) Confrontational: anger/disgust high + aggressive patterns
    if (anger + disgust) > 0.5 and any(p in patterns for p in ["insults", "control", "threat"]):
        return "confrontational"

    # 4) Manipulative: neutral high + manipulation patterns
    if neutral > 0.4 and any(p in patterns for p in ["gaslighting", "dismissiveness", "projection", "guilt tripping", "blame shifting"]):
        return "manipulative"

    # 5) Feigned Warmth: joy high but manipulative patterns present
    if joy > 0.5 and any(p in patterns for p in ["gaslighting", "dismissiveness", "projection", "guilt tripping", "blame shifting"]):
        return "feigned warmth"

    # 6) Defensive: anger high + contradictory statements
    if anger > 0.4 and "contradictory statements" in patterns:
        return "defensive"

    # 7) Neutral: pure neutral dominates all
    if neutral > max(anger, disgust, sadness, joy, fear):
        return "neutral"

    return None


# ——— 4) Single-message analysis —————————————————————————————————————————————
def analyze_message(text):
    # 1) emotion profiling
    emotion_profile = get_emotion_profile(text)

    # 2) abuse-pattern classification
    toks = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
    with torch.no_grad():
        logits = model(**toks).logits.squeeze(0)
    scores = torch.sigmoid(logits).cpu().numpy()

    # 3) identify active patterns
    active_patterns = [
        label for label, prob in zip(LABELS, scores)
        if prob >= THRESHOLDS[label]
    ]

    # 4) tone tagging
    tone_tag = get_emotional_tone_tag(emotion_profile, active_patterns)

    return {
        "emotion_profile": emotion_profile,
        "active_patterns": active_patterns,
        "tone_tag": tone_tag
    }


# ——— 5) Composite wrapper (handles .txt or image + text boxes) ——————————————————————
def analyze_composite(uploaded_file, *texts):
    outputs = []

    # file upload
    if uploaded_file is not None:
        raw = uploaded_file.read()
        name = uploaded_file.name.lower()
        if name.endswith((".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".gif")):
            img = Image.open(io.BytesIO(raw))
            content = pytesseract.image_to_string(img)
        else:
            try:
                content = raw.decode("utf-8")
            except UnicodeDecodeError:
                content = raw.decode("latin-1")

        r = analyze_message(content)
        outputs.append(
            "── Uploaded File ──\n"
            f"Emotion Profile : {r['emotion_profile']}\n"
            f"Active Patterns : {r['active_patterns']}\n"
            f"Emotional Tone  : {r['tone_tag']}\n"
        )

    # text inputs
    for idx, txt in enumerate(texts, start=1):
        if not txt:
            continue
        r = analyze_message(txt)
        outputs.append(
            f"── Message {idx} ──\n"
            f"Emotion Profile : {r['emotion_profile']}\n"
            f"Active Patterns : {r['active_patterns']}\n"
            f"Emotional Tone  : {r['tone_tag']}\n"
        )

    if not outputs:
        return "Please enter at least one message."

    return "\n".join(outputs)


# ——— 6) Gradio interface ————————————————————————————————————————————————
message_inputs = [gr.Textbox(label=f"Message {i+1}") for i in range(3)]

iface = gr.Interface(
    fn=analyze_composite,
    inputs=[gr.File(file_types=[".txt", ".png", ".jpg", ".jpeg"], label="Upload text or image")] + message_inputs,
    outputs=gr.Textbox(label="Analysis"),
    title="Tether Analyzer (streamlined)",
    description="Emotion profiling, pattern tags, and tone tagging—no motif detection, no abuse score or DARVO."
)

if __name__ == "__main__":
    iface.launch()