File size: 7,324 Bytes
239a968
70ce6b1
 
cd900c5
 
 
fe6b66c
70ce6b1
fe6b66c
 
 
 
 
 
 
 
70ce6b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c96a489
f9903fd
c96a489
93ddbae
 
 
c96a489
 
93ddbae
 
c96a489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3624f82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93ddbae
 
 
70ce6b1
cd900c5
834f0ff
cd900c5
70ce6b1
 
cd900c5
70ce6b1
 
 
 
 
cd900c5
 
 
 
 
70ce6b1
c96a489
 
 
 
 
 
 
f9903fd
cd900c5
70ce6b1
cd900c5
 
 
 
70ce6b1
 
c96a489
93ddbae
70ce6b1
93ddbae
cd900c5
93ddbae
 
 
 
 
 
 
 
 
 
 
 
 
76dedd8
 
cd900c5
 
 
76dedd8
93ddbae
cd900c5
70ce6b1
76dedd8
 
 
93ddbae
70ce6b1
cd900c5
 
 
76dedd8
 
 
 
93ddbae
76dedd8
834f0ff
cd900c5
93ddbae
70ce6b1
239a968
fe6b66c
70ce6b1
c96a489
 
 
70ce6b1
c96a489
 
fe6b66c
 
70ce6b1
cd900c5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import gradio as gr
import torch
from transformers import pipeline as hf_pipeline, AutoModelForSequenceClassification, AutoTokenizer
from PIL import Image
import pytesseract
import io

# ——— 1) Emotion Pipeline ————————————————————————————————————————————————
emotion_pipeline = hf_pipeline(
    "text-classification",
    model="j-hartmann/emotion-english-distilroberta-base",
    top_k=None,
    truncation=True
)

def get_emotion_profile(text):
    results = emotion_pipeline(text)
    if isinstance(results, list) and isinstance(results[0], list):
        results = results[0]
    return {r["label"].lower(): round(r["score"], 3) for r in results}


# ——— 2) Abuse-patterns Model ——————————————————————————————————————————————
model_name = "SamanthaStorm/tether-multilabel-v3"
model     = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)

LABELS = [
    "blame shifting", "contradictory statements", "control", "dismissiveness",
    "gaslighting", "guilt tripping", "insults", "obscure language",
    "projection", "recovery phase", "threat"
]

THRESHOLDS = {
    "blame shifting": 0.28, "contradictory statements": 0.27, "control": 0.08, "dismissiveness": 0.32,
    "gaslighting":     0.27, "guilt tripping":           0.31, "insults":  0.10, "obscure language": 0.55,
    "projection":      0.09, "recovery phase":           0.33, "threat":    0.15
}

# ——— 3) Emotional-tone tagging (detailed categories) —————————————————————————————
def get_emotional_tone_tag(emotion_profile, patterns):
    # unpack emotion scores
    sadness = emotion_profile.get("sadness", 0)
    joy     = emotion_profile.get("joy",     0)
    neutral = emotion_profile.get("neutral", 0)
    disgust = emotion_profile.get("disgust", 0)
    anger   = emotion_profile.get("anger",   0)
    fear    = emotion_profile.get("fear",    0)

    # 1. Performative Regret
    if (
        sadness > 0.4 and
        any(p in patterns for p in ["blame shifting", "guilt tripping", "recovery phase"])
    ):
        return "performative regret"

    # 2. Coercive Warmth
    if (
        (joy > 0.3 or sadness > 0.4) and
        any(p in patterns for p in ["control", "gaslighting"])
    ):
        return "coercive warmth"

    # 3. Cold Invalidation
    if (
        (neutral + disgust) > 0.5 and
        any(p in patterns for p in ["dismissiveness", "projection", "obscure language"])
    ):
        return "cold invalidation"

    # 4. Genuine Vulnerability
    if (
        (sadness + fear) > 0.5 and
        all(p == "recovery phase" for p in patterns)
    ):
        return "genuine vulnerability"

    # 5. Emotional Threat
    if (
        (anger + disgust) > 0.5 and
        any(p in patterns for p in ["control", "threat", "insults", "dismissiveness"])
    ):
        return "emotional threat"

    # 6. Weaponized Sadness
    if (
        sadness > 0.6 and
        any(p in patterns for p in ["guilt tripping", "projection"])
    ):
        return "weaponized sadness"

    # 7. Toxic Resignation
    if (
        neutral > 0.5 and
        any(p in patterns for p in ["dismissiveness", "obscure language"])
    ):
        return "toxic resignation"
        
    # 8. Indignant Reproach
    if (
        anger > 0.5 and
        any(p in patterns for p in ["guilt tripping","contradictory statements"]
     ):
        return "indignant reproach"
    if (
        anger > 0.6 and patterns
    ):
        return "confrontational"
    # 8. Passive Aggression
    if neutral > 0.6 and any(p in patterns for p in ["dismissiveness","projection"]):
        return "passive aggression"
    # 9. Sarcastic Mockery
    if joy > 0.3 and "insults" in patterns:
        return "sarcastic mockery"

    return None


# ——— 4) Single-message analysis —————————————————————————————————————————————
def analyze_message(text):
    # 1) emotion profiling
    emotion_profile = get_emotion_profile(text)

    # 2) abuse-pattern classification
    toks = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
    with torch.no_grad():
        logits = model(**toks).logits.squeeze(0)
    scores = torch.sigmoid(logits).cpu().numpy()

    # 3) identify active patterns
    active_patterns = [
        label for label, prob in zip(LABELS, scores)
        if prob >= THRESHOLDS[label]
    ]

    # 4) add recovery-phase on apology keywords
    low = text.lower()
    if any(k in low for k in ["sorry", "apolog", "forgive"]):
        if "recovery phase" not in active_patterns:
            active_patterns.append("recovery phase")

    # 5) tone tagging with detailed rules
    tone_tag = get_emotional_tone_tag(emotion_profile, active_patterns)

    return {
        "emotion_profile": emotion_profile,
        "active_patterns": active_patterns,
        "tone_tag": tone_tag
    }


# ——— 5) Composite wrapper (handles uploads + text boxes) ——————————————————————————
def analyze_composite(uploaded_file, *texts):
    outputs = []

    # file upload
    if uploaded_file is not None:
        raw = uploaded_file.read()
        name = uploaded_file.name.lower()
        if name.endswith((".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".gif")):
            img = Image.open(io.BytesIO(raw))
            content = pytesseract.image_to_string(img)
        else:
            try:
                content = raw.decode("utf-8")
            except UnicodeDecodeError:
                content = raw.decode("latin-1")

        r = analyze_message(content)
        outputs.append(
            "── Uploaded File ──\n"
            f"Emotion Profile : {r['emotion_profile']}\n"
            f"Active Patterns : {r['active_patterns']}\n"
            f"Emotional Tone  : {r['tone_tag']}\n"
        )

    # text inputs
    for idx, txt in enumerate(texts, start=1):
        if not txt:
            continue
        r = analyze_message(txt)
        outputs.append(
            f"── Message {idx} ──\n"
            f"Emotion Profile : {r['emotion_profile']}\n"
            f"Active Patterns : {r['active_patterns']}\n"
            f"Emotional Tone  : {r['tone_tag']}\n"
        )

    if not outputs:
        return "Please enter at least one message."

    return "\n".join(outputs)


# ——— 6) Gradio interface ————————————————————————————————————————————————
message_inputs = [gr.Textbox(label=f"Message {i+1}") for i in range(3)]

iface = gr.Interface(
    fn=analyze_composite,
    inputs=[
        gr.File(file_types=[".txt", ".png", ".jpg", ".jpeg"], label="Upload text or image")
    ] + message_inputs,
    outputs=gr.Textbox(label="Analysis"),
    title="Tether Analyzer (detailed tone tags)",
    description="Emotion profiling, pattern tags, and nuanced tone categories—no abuse score or DARVO."
)

if __name__ == "__main__":
    iface.launch()