Spaces:
Sleeping
Sleeping
File size: 7,324 Bytes
239a968 70ce6b1 cd900c5 fe6b66c 70ce6b1 fe6b66c 70ce6b1 c96a489 f9903fd c96a489 93ddbae c96a489 93ddbae c96a489 3624f82 93ddbae 70ce6b1 cd900c5 834f0ff cd900c5 70ce6b1 cd900c5 70ce6b1 cd900c5 70ce6b1 c96a489 f9903fd cd900c5 70ce6b1 cd900c5 70ce6b1 c96a489 93ddbae 70ce6b1 93ddbae cd900c5 93ddbae 76dedd8 cd900c5 76dedd8 93ddbae cd900c5 70ce6b1 76dedd8 93ddbae 70ce6b1 cd900c5 76dedd8 93ddbae 76dedd8 834f0ff cd900c5 93ddbae 70ce6b1 239a968 fe6b66c 70ce6b1 c96a489 70ce6b1 c96a489 fe6b66c 70ce6b1 cd900c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import gradio as gr
import torch
from transformers import pipeline as hf_pipeline, AutoModelForSequenceClassification, AutoTokenizer
from PIL import Image
import pytesseract
import io
# ——— 1) Emotion Pipeline ————————————————————————————————————————————————
emotion_pipeline = hf_pipeline(
"text-classification",
model="j-hartmann/emotion-english-distilroberta-base",
top_k=None,
truncation=True
)
def get_emotion_profile(text):
results = emotion_pipeline(text)
if isinstance(results, list) and isinstance(results[0], list):
results = results[0]
return {r["label"].lower(): round(r["score"], 3) for r in results}
# ——— 2) Abuse-patterns Model ——————————————————————————————————————————————
model_name = "SamanthaStorm/tether-multilabel-v3"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
LABELS = [
"blame shifting", "contradictory statements", "control", "dismissiveness",
"gaslighting", "guilt tripping", "insults", "obscure language",
"projection", "recovery phase", "threat"
]
THRESHOLDS = {
"blame shifting": 0.28, "contradictory statements": 0.27, "control": 0.08, "dismissiveness": 0.32,
"gaslighting": 0.27, "guilt tripping": 0.31, "insults": 0.10, "obscure language": 0.55,
"projection": 0.09, "recovery phase": 0.33, "threat": 0.15
}
# ——— 3) Emotional-tone tagging (detailed categories) —————————————————————————————
def get_emotional_tone_tag(emotion_profile, patterns):
# unpack emotion scores
sadness = emotion_profile.get("sadness", 0)
joy = emotion_profile.get("joy", 0)
neutral = emotion_profile.get("neutral", 0)
disgust = emotion_profile.get("disgust", 0)
anger = emotion_profile.get("anger", 0)
fear = emotion_profile.get("fear", 0)
# 1. Performative Regret
if (
sadness > 0.4 and
any(p in patterns for p in ["blame shifting", "guilt tripping", "recovery phase"])
):
return "performative regret"
# 2. Coercive Warmth
if (
(joy > 0.3 or sadness > 0.4) and
any(p in patterns for p in ["control", "gaslighting"])
):
return "coercive warmth"
# 3. Cold Invalidation
if (
(neutral + disgust) > 0.5 and
any(p in patterns for p in ["dismissiveness", "projection", "obscure language"])
):
return "cold invalidation"
# 4. Genuine Vulnerability
if (
(sadness + fear) > 0.5 and
all(p == "recovery phase" for p in patterns)
):
return "genuine vulnerability"
# 5. Emotional Threat
if (
(anger + disgust) > 0.5 and
any(p in patterns for p in ["control", "threat", "insults", "dismissiveness"])
):
return "emotional threat"
# 6. Weaponized Sadness
if (
sadness > 0.6 and
any(p in patterns for p in ["guilt tripping", "projection"])
):
return "weaponized sadness"
# 7. Toxic Resignation
if (
neutral > 0.5 and
any(p in patterns for p in ["dismissiveness", "obscure language"])
):
return "toxic resignation"
# 8. Indignant Reproach
if (
anger > 0.5 and
any(p in patterns for p in ["guilt tripping","contradictory statements"]
):
return "indignant reproach"
if (
anger > 0.6 and patterns
):
return "confrontational"
# 8. Passive Aggression
if neutral > 0.6 and any(p in patterns for p in ["dismissiveness","projection"]):
return "passive aggression"
# 9. Sarcastic Mockery
if joy > 0.3 and "insults" in patterns:
return "sarcastic mockery"
return None
# ——— 4) Single-message analysis —————————————————————————————————————————————
def analyze_message(text):
# 1) emotion profiling
emotion_profile = get_emotion_profile(text)
# 2) abuse-pattern classification
toks = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
logits = model(**toks).logits.squeeze(0)
scores = torch.sigmoid(logits).cpu().numpy()
# 3) identify active patterns
active_patterns = [
label for label, prob in zip(LABELS, scores)
if prob >= THRESHOLDS[label]
]
# 4) add recovery-phase on apology keywords
low = text.lower()
if any(k in low for k in ["sorry", "apolog", "forgive"]):
if "recovery phase" not in active_patterns:
active_patterns.append("recovery phase")
# 5) tone tagging with detailed rules
tone_tag = get_emotional_tone_tag(emotion_profile, active_patterns)
return {
"emotion_profile": emotion_profile,
"active_patterns": active_patterns,
"tone_tag": tone_tag
}
# ——— 5) Composite wrapper (handles uploads + text boxes) ——————————————————————————
def analyze_composite(uploaded_file, *texts):
outputs = []
# file upload
if uploaded_file is not None:
raw = uploaded_file.read()
name = uploaded_file.name.lower()
if name.endswith((".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".gif")):
img = Image.open(io.BytesIO(raw))
content = pytesseract.image_to_string(img)
else:
try:
content = raw.decode("utf-8")
except UnicodeDecodeError:
content = raw.decode("latin-1")
r = analyze_message(content)
outputs.append(
"── Uploaded File ──\n"
f"Emotion Profile : {r['emotion_profile']}\n"
f"Active Patterns : {r['active_patterns']}\n"
f"Emotional Tone : {r['tone_tag']}\n"
)
# text inputs
for idx, txt in enumerate(texts, start=1):
if not txt:
continue
r = analyze_message(txt)
outputs.append(
f"── Message {idx} ──\n"
f"Emotion Profile : {r['emotion_profile']}\n"
f"Active Patterns : {r['active_patterns']}\n"
f"Emotional Tone : {r['tone_tag']}\n"
)
if not outputs:
return "Please enter at least one message."
return "\n".join(outputs)
# ——— 6) Gradio interface ————————————————————————————————————————————————
message_inputs = [gr.Textbox(label=f"Message {i+1}") for i in range(3)]
iface = gr.Interface(
fn=analyze_composite,
inputs=[
gr.File(file_types=[".txt", ".png", ".jpg", ".jpeg"], label="Upload text or image")
] + message_inputs,
outputs=gr.Textbox(label="Analysis"),
title="Tether Analyzer (detailed tone tags)",
description="Emotion profiling, pattern tags, and nuanced tone categories—no abuse score or DARVO."
)
if __name__ == "__main__":
iface.launch()
|