Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
import torch | |
from transformers import Blip2ForConditionalGeneration, AutoProcessor | |
# Load your fine-tuned model and processor from local directories | |
processor = AutoProcessor.from_pretrained("./processor") | |
model = Blip2ForConditionalGeneration.from_pretrained("./model", device_map="auto", torch_dtype=torch.float16) | |
# Inference function | |
def generate_caption(image: Image.Image) -> str: | |
# Convert image to RGB and process | |
image = image.convert("RGB") | |
inputs = processor(images=image, return_tensors="pt").to(model.device, torch.float16) | |
# Generate caption | |
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=25) | |
caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return caption | |
# Gradio UI | |
iface = gr.Interface( | |
fn=generate_caption, | |
inputs=gr.Image(type="pil"), | |
outputs="text", | |
title="🖼️ Image Captioning with Fine-Tuned BLIP2", | |
description="Upload an image to generate a caption using your custom fine-tuned BLIP2 model.", | |
) | |
if __name__ == "__main__": | |
iface.launch() | |