File size: 1,126 Bytes
20989f7
 
 
40cb15a
20989f7
40cb15a
 
 
20989f7
40cb15a
 
 
 
 
 
 
20989f7
 
 
 
40cb15a
20989f7
 
 
 
40cb15a
 
20989f7
 
40cb15a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import gradio as gr
from PIL import Image
import torch
from transformers import Blip2ForConditionalGeneration, AutoProcessor

# Load your fine-tuned model and processor from local directories
processor = AutoProcessor.from_pretrained("./processor")
model = Blip2ForConditionalGeneration.from_pretrained("./model", device_map="auto", torch_dtype=torch.float16)

# Inference function
def generate_caption(image: Image.Image) -> str:
    # Convert image to RGB and process
    image = image.convert("RGB")
    inputs = processor(images=image, return_tensors="pt").to(model.device, torch.float16)
    
    # Generate caption
    generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=25)
    caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
    return caption

# Gradio UI
iface = gr.Interface(
    fn=generate_caption,
    inputs=gr.Image(type="pil"),
    outputs="text",
    title="🖼️ Image Captioning with Fine-Tuned BLIP2",
    description="Upload an image to generate a caption using your custom fine-tuned BLIP2 model.",
)

if __name__ == "__main__":
    iface.launch()