Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,573 Bytes
7252f98 9aaa660 42ed840 332db3a bd9baef 332db3a 7252f98 332db3a 7252f98 2ba8b3f d86917b 2ba8b3f cfffc32 02f6e21 cfffc32 6c7f510 cfffc32 d86917b 13b1370 6c7f510 d86917b 6034d83 6c7f510 acc4845 2ba8b3f 6c7f510 92e70ff db84545 7252f98 0e840df db84545 b5f844d dc427d9 b3de773 dc427d9 2ba8b3f 13b1370 7252f98 b1cf46e 4152853 b1cf46e 3f5293d db84545 e31eff0 3f5293d 2ba8b3f b1cf46e 7252f98 2736195 4d3e9fe 3f5293d df4c990 3f5293d f86092a 20ff8b2 02f6e21 02eb393 fc90b53 7252f98 9756472 7252f98 12738e5 7252f98 3f5293d d29da35 a494446 db84545 d29da35 12738e5 a494446 8e98890 a494446 d29da35 9756472 a494446 df4c990 a494446 d29da35 9756472 d29da35 9756472 d29da35 8cb5f7a d29da35 8e98890 a7ab71d a494446 d29da35 a3a4100 acc4845 9756472 d84223d 3f5293d a494446 20ff8b2 d29da35 7252f98 a494446 150f6e1 d29da35 9756472 df4c990 2798cf6 d29da35 9756472 d29da35 0e1a415 d84223d a7ab71d 12738e5 d29da35 7252f98 d86917b 3f5293d d86917b 3f5293d 332db3a 20ff8b2 3f5293d 55b43fa 20ff8b2 3f5293d 7065c9f db84545 8cb5f7a db84545 800af7e 3f5293d 3f7f1a0 f7efac8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import gradio as gr
import torch
import numpy as np
import json
import time
from transformers import AutoTokenizer
import os
import importlib
from huggingface_hub import hf_hub_download
import spaces
from dotenv import load_dotenv
from infer import (
load_trained_model,
find_answer_start,
get_noising_schedule,
noisify_answer,
generate_diffusion_text,
filter_logits
)
from models import CustomTransformerModel
from model_config import CustomTransformerConfig
# Load .env only when running locally
if os.getenv("HF_TOKEN") is None:
load_dotenv()
hf_token = os.getenv("HF_TOKEN")
if hf_token is None:
raise ValueError("HF_TOKEN is not set")
rng = np.random.default_rng()
# Add new noising function
def confidence_guided_noising(input_ids, answer_start, confidences, noise_clipping, threshold=1.0, noise_start=1.0):
noised = input_ids.copy()
answer_len = len(input_ids) - answer_start
num_to_noise = int(threshold * answer_len * noise_start)
if num_to_noise == 0:
return noised, []
all_indices = np.arange(answer_start, len(input_ids))
eos_indices = [i for i in all_indices if input_ids[i] == eos_token_id]
non_eos_indices = [i for i in all_indices if input_ids[i] != eos_token_id]
# Proportionally split how many to noise
num_non_eos_to_noise = int(num_to_noise * len(non_eos_indices) / (len(non_eos_indices) + len(eos_indices) + 1e-5))
num_eos_to_noise = num_to_noise - num_non_eos_to_noise
noised_indices = []
# --- Non-EOS ---
if non_eos_indices:
raw_weights = 1.0 - np.array([confidences[i - answer_start] for i in non_eos_indices])
raw_weights = np.clip(raw_weights, a_min=noise_clipping, a_max=None)
weights = raw_weights / raw_weights.sum()
chosen = rng.choice(non_eos_indices, size=min(num_non_eos_to_noise, len(non_eos_indices)), replace=False, p=weights)
noised_indices.extend(chosen.tolist())
# --- EOS ---
if eos_indices and num_eos_to_noise > 0:
raw_weights = 1.0 - np.array([confidences[i - answer_start] for i in eos_indices])
raw_weights = np.clip(raw_weights, a_min=noise_clipping, a_max=None)
weights = raw_weights / raw_weights.sum()
chosen = rng.choice(eos_indices, size=min(num_eos_to_noise, len(eos_indices)), replace=False, p=weights)
noised_indices.extend(chosen.tolist())
for idx in noised_indices:
noised[idx] = mask_token_id
noised_indices = sorted(noised_indices)
return noised, noised_indices
@spaces.GPU
def generate_diffusion_text(input_ids, top_p, top_k):
with torch.no_grad():
input_tensor = torch.tensor([input_ids], dtype=torch.long).to(model.device)
with torch.amp.autocast('cuda', dtype=torch.float16):
logits = model(input_ids=input_tensor)["logits"]
logits = filter_logits(logits, top_k=top_p, top_p=top_k)
logits = logits.clamp(min=-1e8, max=1e4)
probs = torch.nn.functional.softmax(logits, dim=-1)[0]
probs = torch.clamp(probs, min=1e-8, max=1.0)
assert torch.all(torch.isfinite(probs)), "Non-finite values in probs!"
assert (probs >= 0).all(), "Negative probs!"
sampled = torch.multinomial(probs, num_samples=1).squeeze(-1).tolist()
# Extract confidence of selected tokens
conf = probs[range(len(sampled)), sampled].cpu().numpy()
return sampled, conf
def format_chat_prompt(question):
return (
"<|begin_of_text|>\n"
"<|start_header_id|>system<|end_header_id|>\n"
"You are a helpful assistant.\n"
"<|start_header_id|>user<|end_header_id|>\n"
f"{question}\n"
"<|start_header_id|>assistant<|end_header_id|>\n"
)
# --- Inference Wrapper ---
def diffusion_chat(question, max_it, pause_length, sharpness,
clustering, noise_start, use_confidence_noising,
noise_clipping, top_p, top_k):
placeholder = "What do you know about the city of Amsterdam?"
if question.strip() == "":
question = placeholder
print('started generation')
prompt = format_chat_prompt(question)
input_ids = tokenizer.encode(prompt, add_special_tokens=False)
answer_start = find_answer_start(input_ids, assistant_marker_ids)
if answer_start is None:
yield "Error: Could not find Assistant marker in input."
return
if len(input_ids) < 256:
input_ids += [mask_token_id] * (256 - len(input_ids))
else:
input_ids = input_ids[:256]
ori_input_tokens = input_ids
current_tokens, just_noised_indices = noisify_answer(
input_ids, answer_start, tokenizer, threshold=1.0, clustering=clustering, noise_start = 1.0,
)
yield f"<b>Iteration 0 (initial noise):</b><br>" + tokenizer.decode(current_tokens[answer_start:], skip_special_tokens=True).replace('\n', '<br>')
time.sleep(pause_length)
last_tokens = []
prev_decoded_tokens = []
generation_start = time.time()
for i in range(max_it):
print('Generating output')
# Model step
generated_tokens, confidences = generate_diffusion_text(current_tokens, top_p, top_k)
elapsed = time.time() - generation_start
remaining = pause_length - elapsed
if remaining > 0:
time.sleep(remaining)
# Save full output for noising step
current_tokens = ori_input_tokens[:answer_start] + generated_tokens[answer_start:]
# --- GREEN HIGHLIGHT ---
decoded_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])
highlighted = []
for j, tok in enumerate(decoded_tokens):
tok_id = tokenizer.convert_tokens_to_ids(tok)
if tok_id == eos_token_id:
continue
token_str = tokenizer.convert_tokens_to_string([tok])
if prev_decoded_tokens and j < len(prev_decoded_tokens) and tok != prev_decoded_tokens[j]:
highlighted.append(f'<span style="color:green">{token_str}</span>')
else:
highlighted.append(token_str)
prev_decoded_tokens = decoded_tokens
yield f"<b>Iteration {i+1}/{max_it} (after generation):</b><br>" + "".join(highlighted).replace('\n', '<br>')
time.sleep(pause_length)
# --- Early stopping ---
last_tokens.append(current_tokens)
if len(last_tokens) > 3:
last_tokens.pop(0)
if len(last_tokens) == 3 and last_tokens[0] == last_tokens[1] == last_tokens[2]:
yield f"<b>Stopped early after {i+1} iterations.</b>"
break
previous_tokens = current_tokens.copy()
# --- NOISING STEP ---
threshold = get_noising_schedule(i, max_it, sharpness=sharpness)
if use_confidence_noising:
noised_answer, just_noised_indices = confidence_guided_noising(
current_tokens, answer_start, confidences, noise_clipping, threshold=threshold, noise_start=noise_start
)
# just_noised_indices = []
else:
noised_answer, just_noised_indices = noisify_answer(
current_tokens, answer_start, tokenizer, threshold=threshold, clustering=clustering, noise_start = noise_start,
)
# --- RED HIGHLIGHT ---
decoded_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])
highlighted = []
for j, tok in enumerate(decoded_tokens):
tok_id = tokenizer.convert_tokens_to_ids(tok)
if tok_id == eos_token_id:
continue
token_str = tokenizer.convert_tokens_to_string([tok])
abs_idx = answer_start + j
if abs_idx in just_noised_indices:
highlighted.append(f'<span style="color:red">{token_str}</span>')
else:
highlighted.append(token_str)
# Compose full input again: prompt + noised answer
current_tokens = ori_input_tokens[:answer_start] + noised_answer[answer_start:]
yield f"<b>Iteration {i+1}/{max_it} (before noising):</b><br>" + "".join(highlighted).replace('\n', '<br>')
generation_start = time.time()
answer_ids = current_tokens[answer_start:]
try:
eos_index = answer_ids.index(eos_token_id)
final_ids = answer_ids[:eos_index]
except ValueError:
final_ids = answer_ids
num_tokens = len(final_ids)
final_output = tokenizer.decode(final_ids, skip_special_tokens=True)
print(final_output)
yield f"<b>Final Output ({num_tokens} tokens after {i+1} iterations):</b><br>" + final_output.replace('\n', '<br>')
# --- Gradio Interface ---
print("Loading model...")
ckpt_path = hf_hub_download(
repo_id="ruurd/tini_model",
filename="diffusion-model.pth",
token=os.getenv("HF_TOKEN")
)
model, tokenizer = load_trained_model(checkpoint_path=ckpt_path)
print("✅ Model loaded.")
vocab_size = len(tokenizer)
eos_token_id = tokenizer.eos_token_id
mask_token_id = tokenizer.encode('MASK', add_special_tokens=False)[0]
assistant_marker_ids = tokenizer.encode("<|start_header_id|>assistant<|end_header_id|>", add_special_tokens=False)
demo = gr.Interface(
fn=diffusion_chat,
inputs=[
gr.Textbox(label="User Question", lines=2, placeholder="What do you know about the city of Amsterdam?"),
gr.Slider(1, 512, value=64, step=1, label="Number of iterarions: ↑ = more iterations"),
gr.Slider(0.01, 5, value=0.01, step=0.01, label="Pause between iteration ↑ = longer pause"),
gr.Slider(1.0, 20.0, value=1.0, step=0.5, label="Noise decay sharpness: ↓ = more noise in later iterations"),
gr.Slider(0.0, 1.0, value=0.0, step=0.05, label="Clustering: ↑ = more clustered noising"),
gr.Slider(0.0, 1.0, value=0.2, step=0.05, label="Noise start fraction: ↑ = more noise"),
gr.Checkbox(value=False, label="Use confidence-guided noising"),
gr.Slider(0.01, 1.0, value=0.01, step=0.01, label="Noise clipping: ↓ = more confidence guidance"),
gr.Slider(1, 1000, value = 100, step = 1, label = "Top-p: ↑ = more random answers"),
gr.Slider(0.0, 1.0, value = 0.9, step = 0.01, label = "Top-k: ↑ = more random answers")
],
outputs=[gr.HTML(label="Diffusion Output")],
title="Diffusion Language Model Chat",
theme="default",
description="This interface runs a diffusion-based language model to generate answers progressively."
)
demo.launch(share=True, allowed_paths=["."], ssr_mode=False)
|