Spaces:
Running on Zero

File size: 10,573 Bytes
7252f98
 
 
 
 
 
 
9aaa660
 
42ed840
332db3a
 
 
 
 
 
 
 
 
bd9baef
 
332db3a
 
 
 
7252f98
 
 
332db3a
 
7252f98
 
 
2ba8b3f
d86917b
2ba8b3f
cfffc32
02f6e21
cfffc32
6c7f510
cfffc32
d86917b
 
 
13b1370
6c7f510
 
d86917b
6034d83
6c7f510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acc4845
2ba8b3f
6c7f510
 
 
92e70ff
db84545
7252f98
 
0e840df
 
db84545
b5f844d
dc427d9
b3de773
dc427d9
 
 
2ba8b3f
 
 
13b1370
7252f98
b1cf46e
4152853
 
 
 
 
 
 
b1cf46e
 
3f5293d
db84545
 
 
e31eff0
3f5293d
 
 
2ba8b3f
b1cf46e
7252f98
 
2736195
 
 
4d3e9fe
3f5293d
df4c990
3f5293d
 
 
 
f86092a
20ff8b2
02f6e21
02eb393
fc90b53
7252f98
9756472
7252f98
12738e5
 
7252f98
3f5293d
d29da35
a494446
db84545
d29da35
12738e5
 
 
 
 
a494446
8e98890
a494446
 
 
d29da35
9756472
a494446
df4c990
a494446
d29da35
9756472
d29da35
 
 
 
9756472
d29da35
8cb5f7a
d29da35
8e98890
 
 
 
 
 
 
 
a7ab71d
 
a494446
d29da35
 
a3a4100
acc4845
9756472
d84223d
3f5293d
a494446
20ff8b2
d29da35
7252f98
a494446
150f6e1
d29da35
9756472
 
df4c990
2798cf6
d29da35
9756472
d29da35
 
 
 
0e1a415
d84223d
 
 
a7ab71d
12738e5
d29da35
7252f98
d86917b
 
 
 
 
 
 
 
 
 
3f5293d
d86917b
 
3f5293d
 
 
332db3a
 
 
 
 
20ff8b2
3f5293d
55b43fa
20ff8b2
 
 
 
 
3f5293d
 
 
7065c9f
db84545
 
 
 
 
8cb5f7a
db84545
800af7e
 
3f5293d
 
 
 
 
 
 
3f7f1a0
 
f7efac8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import gradio as gr
import torch
import numpy as np
import json
import time
from transformers import AutoTokenizer
import os
import importlib
from huggingface_hub import hf_hub_download
import spaces
from dotenv import load_dotenv
from infer import (
    load_trained_model,
    find_answer_start,
    get_noising_schedule,
    noisify_answer,
    generate_diffusion_text,
    filter_logits
)
from models import CustomTransformerModel
from model_config import CustomTransformerConfig

# Load .env only when running locally
if os.getenv("HF_TOKEN") is None:
    load_dotenv()

hf_token = os.getenv("HF_TOKEN")

if hf_token is None:
    raise ValueError("HF_TOKEN is not set")

rng = np.random.default_rng()

# Add new noising function
def confidence_guided_noising(input_ids, answer_start, confidences, noise_clipping, threshold=1.0, noise_start=1.0):
    noised = input_ids.copy()
    answer_len = len(input_ids) - answer_start
    num_to_noise = int(threshold * answer_len * noise_start)
    if num_to_noise == 0:
        return noised, []

    all_indices = np.arange(answer_start, len(input_ids))
    eos_indices = [i for i in all_indices if input_ids[i] == eos_token_id]
    non_eos_indices = [i for i in all_indices if input_ids[i] != eos_token_id]

    # Proportionally split how many to noise
    num_non_eos_to_noise = int(num_to_noise * len(non_eos_indices) / (len(non_eos_indices) + len(eos_indices) + 1e-5))
    num_eos_to_noise = num_to_noise - num_non_eos_to_noise

    noised_indices = []

    # --- Non-EOS ---
    if non_eos_indices:
        raw_weights = 1.0 - np.array([confidences[i - answer_start] for i in non_eos_indices])
        raw_weights = np.clip(raw_weights, a_min=noise_clipping, a_max=None)
        weights = raw_weights / raw_weights.sum()

        chosen = rng.choice(non_eos_indices, size=min(num_non_eos_to_noise, len(non_eos_indices)), replace=False, p=weights)
        noised_indices.extend(chosen.tolist())

    # --- EOS ---
    if eos_indices and num_eos_to_noise > 0:
        raw_weights = 1.0 - np.array([confidences[i - answer_start] for i in eos_indices])
        raw_weights = np.clip(raw_weights, a_min=noise_clipping, a_max=None)
        weights = raw_weights / raw_weights.sum()

        chosen = rng.choice(eos_indices, size=min(num_eos_to_noise, len(eos_indices)), replace=False, p=weights)
        noised_indices.extend(chosen.tolist())

    for idx in noised_indices:
        noised[idx] = mask_token_id

    noised_indices = sorted(noised_indices)
    return noised, noised_indices

@spaces.GPU
def generate_diffusion_text(input_ids, top_p, top_k):
    with torch.no_grad():
        input_tensor = torch.tensor([input_ids], dtype=torch.long).to(model.device)
        with torch.amp.autocast('cuda', dtype=torch.float16):
            logits = model(input_ids=input_tensor)["logits"]
        logits = filter_logits(logits, top_k=top_p, top_p=top_k) 
        logits = logits.clamp(min=-1e8, max=1e4)
        probs = torch.nn.functional.softmax(logits, dim=-1)[0]
        probs = torch.clamp(probs, min=1e-8, max=1.0)
        assert torch.all(torch.isfinite(probs)), "Non-finite values in probs!"
        assert (probs >= 0).all(), "Negative probs!"
        sampled = torch.multinomial(probs, num_samples=1).squeeze(-1).tolist()

        # Extract confidence of selected tokens
        conf = probs[range(len(sampled)), sampled].cpu().numpy()
    return sampled, conf 

def format_chat_prompt(question):
    return (
        "<|begin_of_text|>\n"
        "<|start_header_id|>system<|end_header_id|>\n"
        "You are a helpful assistant.\n"
        "<|start_header_id|>user<|end_header_id|>\n"
        f"{question}\n"
        "<|start_header_id|>assistant<|end_header_id|>\n"
    )

# --- Inference Wrapper ---
def diffusion_chat(question, max_it, pause_length, sharpness, 
                   clustering, noise_start, use_confidence_noising, 
                   noise_clipping, top_p, top_k):
    placeholder = "What do you know about the city of Amsterdam?"
    if question.strip() == "":
        question = placeholder

    print('started generation')
    prompt = format_chat_prompt(question)
    input_ids = tokenizer.encode(prompt, add_special_tokens=False)
    answer_start = find_answer_start(input_ids, assistant_marker_ids)
    if answer_start is None:
        yield "Error: Could not find Assistant marker in input."
        return
    
    if len(input_ids) < 256:
        input_ids += [mask_token_id] * (256 - len(input_ids))
    else:
        input_ids = input_ids[:256]

    ori_input_tokens = input_ids
    current_tokens, just_noised_indices = noisify_answer(
                input_ids, answer_start, tokenizer, threshold=1.0, clustering=clustering, noise_start = 1.0,
            )
    yield f"<b>Iteration 0 (initial noise):</b><br>" + tokenizer.decode(current_tokens[answer_start:], skip_special_tokens=True).replace('\n', '<br>')
    time.sleep(pause_length)
    last_tokens = []
    prev_decoded_tokens = []

    generation_start = time.time()

    for i in range(max_it):
        print('Generating output')

        # Model step
        generated_tokens, confidences = generate_diffusion_text(current_tokens, top_p, top_k)

        elapsed = time.time() - generation_start
        remaining = pause_length - elapsed
        if remaining > 0:
            time.sleep(remaining)

        # Save full output for noising step
        current_tokens = ori_input_tokens[:answer_start] + generated_tokens[answer_start:]

        # --- GREEN HIGHLIGHT ---
        decoded_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])
        highlighted = []
        for j, tok in enumerate(decoded_tokens):
            tok_id = tokenizer.convert_tokens_to_ids(tok)
            if tok_id == eos_token_id:
                continue
            token_str = tokenizer.convert_tokens_to_string([tok])
            if prev_decoded_tokens and j < len(prev_decoded_tokens) and tok != prev_decoded_tokens[j]:
                highlighted.append(f'<span style="color:green">{token_str}</span>')
            else:
                highlighted.append(token_str)

        prev_decoded_tokens = decoded_tokens
        yield f"<b>Iteration {i+1}/{max_it} (after generation):</b><br>" + "".join(highlighted).replace('\n', '<br>')
        time.sleep(pause_length)

        # --- Early stopping ---
        last_tokens.append(current_tokens)
        if len(last_tokens) > 3:
            last_tokens.pop(0)
        if len(last_tokens) == 3 and last_tokens[0] == last_tokens[1] == last_tokens[2]:
            yield f"<b>Stopped early after {i+1} iterations.</b>"
            break

        previous_tokens = current_tokens.copy()

        # --- NOISING STEP ---
        threshold = get_noising_schedule(i, max_it, sharpness=sharpness)
        if use_confidence_noising:
            noised_answer, just_noised_indices = confidence_guided_noising(
                current_tokens, answer_start, confidences, noise_clipping, threshold=threshold, noise_start=noise_start
            )
            # just_noised_indices = []
        else:
            noised_answer, just_noised_indices = noisify_answer(
                current_tokens, answer_start, tokenizer, threshold=threshold, clustering=clustering, noise_start = noise_start,
            )

        # --- RED HIGHLIGHT ---
        decoded_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])
        highlighted = []
        for j, tok in enumerate(decoded_tokens):
            tok_id = tokenizer.convert_tokens_to_ids(tok)
            if tok_id == eos_token_id:
                continue
            token_str = tokenizer.convert_tokens_to_string([tok])
            abs_idx = answer_start + j
            if abs_idx in just_noised_indices:
                highlighted.append(f'<span style="color:red">{token_str}</span>')
            else:
                highlighted.append(token_str)

        # Compose full input again: prompt + noised answer
        current_tokens = ori_input_tokens[:answer_start] + noised_answer[answer_start:]
        
        yield f"<b>Iteration {i+1}/{max_it} (before noising):</b><br>" + "".join(highlighted).replace('\n', '<br>')
        generation_start = time.time()


    answer_ids = current_tokens[answer_start:]
    try:
        eos_index = answer_ids.index(eos_token_id)
        final_ids = answer_ids[:eos_index]
    except ValueError:
        final_ids = answer_ids
    
    num_tokens = len(final_ids)
    final_output = tokenizer.decode(final_ids, skip_special_tokens=True)
    
    print(final_output)
    yield f"<b>Final Output ({num_tokens} tokens after {i+1} iterations):</b><br>" + final_output.replace('\n', '<br>')


# --- Gradio Interface ---
print("Loading model...")
ckpt_path = hf_hub_download(
    repo_id="ruurd/tini_model",
    filename="diffusion-model.pth",
    token=os.getenv("HF_TOKEN")
)
model, tokenizer = load_trained_model(checkpoint_path=ckpt_path)
print("✅ Model loaded.")

vocab_size = len(tokenizer)
eos_token_id = tokenizer.eos_token_id
mask_token_id = tokenizer.encode('MASK', add_special_tokens=False)[0]
assistant_marker_ids = tokenizer.encode("<|start_header_id|>assistant<|end_header_id|>", add_special_tokens=False)

demo = gr.Interface(
    fn=diffusion_chat,
    inputs=[
        gr.Textbox(label="User Question", lines=2, placeholder="What do you know about the city of Amsterdam?"),
        gr.Slider(1, 512, value=64, step=1, label="Number of iterarions: ↑ = more iterations"),
        gr.Slider(0.01, 5, value=0.01, step=0.01, label="Pause between iteration ↑ = longer pause"),
        gr.Slider(1.0, 20.0, value=1.0, step=0.5, label="Noise decay sharpness: ↓ = more noise in later iterations"),
        gr.Slider(0.0, 1.0, value=0.0, step=0.05, label="Clustering: ↑ = more clustered noising"),
        gr.Slider(0.0, 1.0, value=0.2, step=0.05, label="Noise start fraction: ↑ = more noise"),
        gr.Checkbox(value=False, label="Use confidence-guided noising"),
        gr.Slider(0.01, 1.0, value=0.01, step=0.01, label="Noise clipping: ↓ = more confidence guidance"),
        gr.Slider(1, 1000, value = 100, step = 1, label = "Top-p: ↑ = more random answers"),
        gr.Slider(0.0, 1.0, value = 0.9, step = 0.01, label = "Top-k: ↑ = more random answers")
    ],
    outputs=[gr.HTML(label="Diffusion Output")],
    title="Diffusion Language Model Chat",
    theme="default",
    description="This interface runs a diffusion-based language model to generate answers progressively."
)

demo.launch(share=True, allowed_paths=["."], ssr_mode=False)