Spaces:
Running
on
Zero
Running
on
Zero
Fix confidence guided noising
Browse files
app.py
CHANGED
@@ -115,46 +115,42 @@ def confidence_guided_noising(input_ids, answer_start, confidences, noise_clippi
|
|
115 |
answer_len = len(input_ids) - answer_start
|
116 |
num_to_noise = int(threshold * answer_len * noise_start)
|
117 |
if num_to_noise == 0:
|
118 |
-
return noised
|
119 |
|
120 |
all_indices = np.arange(answer_start, len(input_ids))
|
121 |
eos_indices = [i for i in all_indices if input_ids[i] == eos_token_id]
|
122 |
non_eos_indices = [i for i in all_indices if input_ids[i] != eos_token_id]
|
123 |
|
124 |
-
|
|
|
125 |
num_eos_to_noise = num_to_noise - num_non_eos_to_noise
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
replace=False,
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
weights_eos = raw_weights_eos / raw_weights_eos.sum() if raw_weights_eos.sum() > 0 else None
|
144 |
-
|
145 |
-
chosen_eos = rng.choice(
|
146 |
-
eos_indices,
|
147 |
-
size=min(num_eos_to_noise, len(eos_indices)),
|
148 |
-
replace=False,
|
149 |
-
p=weights_eos
|
150 |
-
) if weights_eos is not None else []
|
151 |
-
else:
|
152 |
-
chosen_eos = []
|
153 |
|
154 |
-
|
|
|
|
|
|
|
155 |
noised[idx] = mask_token_id
|
156 |
|
157 |
-
|
|
|
|
|
158 |
|
159 |
@spaces.GPU
|
160 |
def generate_diffusion_text(input_ids):
|
|
|
115 |
answer_len = len(input_ids) - answer_start
|
116 |
num_to_noise = int(threshold * answer_len * noise_start)
|
117 |
if num_to_noise == 0:
|
118 |
+
return noised, []
|
119 |
|
120 |
all_indices = np.arange(answer_start, len(input_ids))
|
121 |
eos_indices = [i for i in all_indices if input_ids[i] == eos_token_id]
|
122 |
non_eos_indices = [i for i in all_indices if input_ids[i] != eos_token_id]
|
123 |
|
124 |
+
# Proportionally split how many to noise
|
125 |
+
num_non_eos_to_noise = int(num_to_noise * len(non_eos_indices) / (len(non_eos_indices) + len(eos_indices) + 1e-5))
|
126 |
num_eos_to_noise = num_to_noise - num_non_eos_to_noise
|
127 |
|
128 |
+
noised_indices = []
|
129 |
+
|
130 |
+
# --- Non-EOS ---
|
131 |
+
if non_eos_indices:
|
132 |
+
raw_weights = 1.0 - np.array([confidences[i - answer_start] for i in non_eos_indices])
|
133 |
+
raw_weights = np.clip(raw_weights, a_min=noise_clipping, a_max=None)
|
134 |
+
weights = raw_weights / raw_weights.sum()
|
135 |
+
|
136 |
+
chosen = rng.choice(non_eos_indices, size=min(num_non_eos_to_noise, len(non_eos_indices)), replace=False, p=weights)
|
137 |
+
noised_indices.extend(chosen.tolist())
|
138 |
+
|
139 |
+
# --- EOS ---
|
140 |
+
if eos_indices and num_eos_to_noise > 0:
|
141 |
+
raw_weights = 1.0 - np.array([confidences[i - answer_start] for i in eos_indices])
|
142 |
+
raw_weights = np.clip(raw_weights, a_min=noise_clipping, a_max=None)
|
143 |
+
weights = raw_weights / raw_weights.sum()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
+
chosen = rng.choice(eos_indices, size=min(num_eos_to_noise, len(eos_indices)), replace=False, p=weights)
|
146 |
+
noised_indices.extend(chosen.tolist())
|
147 |
+
|
148 |
+
for idx in noised_indices:
|
149 |
noised[idx] = mask_token_id
|
150 |
|
151 |
+
noised_indices = sorted(noised_indices)
|
152 |
+
return noised, noised_indices
|
153 |
+
|
154 |
|
155 |
@spaces.GPU
|
156 |
def generate_diffusion_text(input_ids):
|