Spaces:
Runtime error
Runtime error
import csv | |
import string | |
import json | |
import gensim.downloader as api | |
import matplotlib.pyplot as plt | |
import nltk | |
import numpy as np | |
import pandas as pd | |
import gradio as gr | |
import readability | |
import seaborn as sns | |
import torch | |
from fuzzywuzzy import fuzz | |
from nltk.corpus import stopwords | |
from nltk.corpus import wordnet as wn | |
from nltk.tokenize import word_tokenize | |
from sklearn.metrics.pairwise import cosine_similarity | |
from transformers import DistilBertTokenizer | |
from transformers import pipeline | |
nltk.download('wordnet') | |
nltk.download('omw-1.4') | |
nltk.download('cmudict') | |
nltk.download('stopwords') | |
nltk.download('punkt') | |
glove_vectors = api.load('glove-wiki-gigaword-100') | |
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') | |
device = torch.device('cuda' if torch.cuda.is_available else 'cpu') | |
# loading model | |
PATH = 'pytorchBERTmodel' | |
model = torch.load(PATH, map_location=torch.device('cpu')) | |
model.eval() | |
model.to('cpu') | |
p = pipeline("automatic-speech-recognition") | |
def wn_syns(word): | |
synonyms = [] | |
for syn in wn.synsets(word): | |
for lm in syn.lemmas(): | |
synonyms.append(lm.name()) | |
return set(synonyms) | |
w2v = dict({}) | |
for idx, key in enumerate(glove_vectors.key_to_index.keys()): | |
w2v[key] = glove_vectors.get_vector(key) | |
def calculate_diversity(text): | |
stop_words = set(stopwords.words('english')) | |
for i in string.punctuation: | |
stop_words.add(i) | |
tokenized_text = word_tokenize(text) | |
tokenized_text = list(map(lambda word: word.lower(), tokenized_text)) | |
sim_words = {} | |
if len(tokenized_text) <= 1: | |
return 1, "More Text Required" | |
for idx, anc in enumerate(tokenized_text): | |
if anc in stop_words or not anc in w2v or anc.isdigit(): | |
sim_words[idx] = '@' | |
continue | |
vocab = [anc] | |
for pos, comp in enumerate(tokenized_text): | |
if pos == idx: | |
continue | |
if comp in stop_words: | |
continue | |
if not comp.isalpha(): | |
continue | |
try: | |
if cosine_similarity(w2v[anc].reshape(1, -1), w2v[comp].reshape(1, -1)) > .7 or comp in wn_syns(anc): | |
vocab.append(comp) | |
except KeyError: | |
continue | |
sim_words[idx] = vocab | |
print(sim_words) | |
scores = {} | |
for key, value in sim_words.items(): | |
if len(value) == 1: | |
scores[key] = -1 | |
continue | |
# if len(value) == 2: | |
# scores[key] = -1 | |
# continue | |
t_sim = len(value) | |
t_rep = (len(value)) - (len(set(value))) | |
score = ((t_sim - t_rep) / t_sim) ** 2 | |
scores[key] = score | |
mean_score = 0 | |
total = 0 | |
for value in scores.values(): | |
if value == -1: | |
continue | |
mean_score += value | |
total += 1 | |
try: | |
return scores, {"Diversity Score": mean_score / total} | |
except ZeroDivisionError: | |
return scores, {"Dviersity Score": "Not Enough Data"} | |
def get_scores(text): | |
return calculate_diversity(text)[0] | |
def get_mean_score(text): | |
return calculate_diversity(text)[1] | |
def dict_to_list(dictionary, max_size=10): | |
outer_list = [] | |
inner_list = [] | |
for key, value in dictionary.items(): | |
inner_list.append(value) | |
if len(inner_list) == max_size: | |
outer_list.append(inner_list) | |
inner_list = [] | |
if len(inner_list) > 0: | |
outer_list.append(inner_list) | |
return outer_list | |
def heatmap(scores, df): | |
total = 0 | |
loops = 0 | |
for ratio in scores.values(): | |
# conditional to visualize the difference between no ratio and a 0 ratio score | |
if ratio != -.3: | |
total += ratio | |
loops += 1 | |
diversity_average = total / loops | |
return sns.heatmap(df, cmap='gist_gray_r', vmin=-.3).set( | |
title='Word Diversity Score Heatmap (Average Score: ' + str(diversity_average) + ')') | |
def stats(text): | |
results = readability.getmeasures(text, lang='en') | |
return results | |
def predict(text, tokenizer=tokenizer): | |
model.eval() | |
model.to('cpu') | |
def prepare_data(text, tokenizer): | |
input_ids = [] | |
attention_masks = [] | |
encoded_text = tokenizer.encode_plus( | |
text, | |
truncation=True, | |
add_special_tokens=True, | |
max_length=315, | |
pad_to_max_length=True, | |
return_attention_mask=True, | |
return_tensors='pt' | |
) | |
input_ids.append(encoded_text['input_ids']) | |
attention_masks.append(encoded_text['attention_mask']) | |
input_ids = torch.cat(input_ids, dim=0) | |
attention_masks = torch.cat(attention_masks, dim=0) | |
return {'input_ids': input_ids, 'attention_masks': attention_masks} | |
tokenized_example_text = prepare_data(text, tokenizer) | |
with torch.no_grad(): | |
result = model( | |
tokenized_example_text['input_ids'].to('cpu'), | |
attention_mask=tokenized_example_text['attention_masks'].to('cpu'), | |
return_dict=True | |
).logits | |
return result | |
def level(score): | |
if score <= 3: | |
return "n Elementary School" | |
elif 3 <= score <= 6: | |
return " Middle School" | |
elif 6 <= score <= 8: | |
return " High School" | |
else: | |
return " College" | |
def reading_difficulty(excerpt): | |
if len(excerpt) == 0: | |
return "No Text Provided" | |
windows = [] | |
words = tokenizer.tokenize(excerpt) | |
if len(words) > 301: | |
for idx, text in enumerate(words): | |
if idx % 300 == 0: | |
if idx <= len(words) - 301: | |
x = ' '.join(words[idx: idx + 299]) | |
windows.append(x) | |
win_preds = [] | |
for text in windows: | |
win_preds.append(predict(text, tokenizer).item()) | |
result = np.mean(win_preds) | |
score = -(result * 1.786 + 6.4) + 10 | |
return "Difficulty Level: " + str(round(score, 2)) + '/10' + ' | A' + str( | |
level(score)) + " student could understand this" | |
else: | |
result = predict(excerpt).item() | |
score = -(result * 1.786 + 6.4) + 10 | |
return 'Difficulty Level: ' + str(round(score, 2)) + '/10' + ' | A' + str( | |
level(score)) + " student could understand this" | |
def calculate_stats(file_name, data_index): | |
# unicode escape only for essays | |
with open(file_name, encoding='unicode_escape') as f: | |
information = {'lines': 0, 'words_per_sentence': 0, 'words': 0, 'syll_per_word': 0, 'characters_per_word': 0, | |
'reading_difficulty': 0} | |
reader = csv.reader(f) | |
for line in reader: | |
if len(line[data_index]) < 100: | |
continue | |
# if detect(line[data_index][len(line[data_index]) -400: len(line[data_index])-1]) == 'en': | |
try: | |
stat = stats(line[data_index]) | |
except ValueError: | |
continue | |
information['lines'] += 1 | |
information['words_per_sentence'] += stat['sentence info']['words_per_sentence'] | |
information['words'] += stat['sentence info']['words'] | |
information['syll_per_word'] += stat['sentence info']['syll_per_word'] | |
information['characters_per_word'] += stat['sentence info']['characters_per_word'] | |
information['reading_difficulty'] += reading_difficulty(line[data_index]) | |
for i in information: | |
if i != 'lines' and i != 'words': | |
information[i] /= information['lines'] | |
return information | |
def transcribe(audio): | |
# speech to text using pipeline | |
text = p(audio)["text"] | |
return text | |
def compute_score(target, actual): | |
print(target) | |
target = target.lower() | |
actual = actual.lower() | |
return fuzz.ratio(target, actual) | |
def phon(text): | |
alph = nltk.corpus.cmudict.dict() | |
text = word_tokenize(text) | |
pronun = [] | |
for word in text: | |
try: | |
pronun.append(alph[word][0]) | |
except Exception as e: | |
pronun.append(word) | |
def remove_digits(lists): | |
for lst in lists: | |
for idx, word in enumerate(lst): | |
lst[idx] = ''.join([letter for letter in word if not letter.isdigit()]) | |
return lists | |
output = [] | |
for i in remove_digits(pronun): | |
output.append('-'.join(i).lower()) | |
return ' '.join(output) | |
def plot(): | |
diversity = calculate_diversity(text)[0] | |
print(diversity) | |
df = pd.DataFrame(dict_to_list(diversity)) | |
return heatmap(diversity, df) | |
def diversity_inter(text): | |
words = word_tokenize(text) | |
scores = get_scores(text) | |
interpret_values = [('', 0.0)] | |
for key, value in scores.items(): | |
interpret_values.append((words[key], value)) | |
interpret_values.append(('', 0.0)) | |
print(interpret_values) | |
return {'original': text, 'interpretation': interpret_values} | |
def sliding_window(text): | |
words = word_tokenize(text) | |
improved_window = [] | |
improved_wind_preds = [] | |
for idx, text in enumerate(words): | |
if idx <= len(words) - 26: | |
x = ' '.join(words[idx: idx + 25]) | |
throw_away = [] | |
score = 0 | |
for idx, i in enumerate(range(idx, idx + 25)): | |
if idx == 0: | |
better_prediction = -(predict(x).item() * 1.786 + 6.4) + 10 | |
score = better_prediction | |
throw_away.append((better_prediction, i)) | |
else: | |
throw_away.append((score, i)) | |
improved_window.append(throw_away) | |
average_scores = {k: 0 for k in range(len(words) - 1)} | |
total_windows = {k: 0 for k in range(len(words) - 1)} | |
for idx, i in enumerate(improved_window): | |
for score, idx in i: | |
average_scores[idx] += score | |
total_windows[idx] += 1 | |
for k, v in total_windows.items(): | |
if v != 0: | |
average_scores[k] /= v | |
inter_scores = [v for v in average_scores.values()] | |
copy_list = inter_scores.copy() | |
print(inter_scores) | |
while len(inter_scores) <= len(words) - 1: | |
inter_scores.append(copy_list[-1]) | |
x = list(range(len(inter_scores))) | |
y = inter_scores | |
fig, ax = plt.subplots() | |
ax.plot(x, y, color='orange', linewidth=2) | |
ax.grid(False) | |
plt.xlabel('Word Number', fontweight='bold') | |
plt.ylabel('Difficulty Score', fontweight='bold') | |
fig.patch.set_facecolor('white') | |
plt.suptitle('Difficulty Score Across Text', fontsize=14, fontweight='bold') | |
plt.style.use('ggplot') | |
fig = plt.gcf() | |
map = [('', 0)] | |
maxy = max(inter_scores) | |
miny = min(inter_scores) | |
spread = maxy - miny | |
for idx, i in enumerate(words): | |
map.append((i, (inter_scores[idx] - miny) / spread)) | |
map.append(('', 0)) | |
return fig, map | |
def get_plot(text): | |
return sliding_window(text)[0] | |
def get_dif_inter(text): | |
return {'original': text, 'interpretation': sliding_window(text)[1]} | |
def speech_to_text(speech, target): | |
text = p(speech)["text"] | |
return text.lower(), {'Pronunciation Score': compute_score(text, target) / 100}, phon(target) | |
def speech_to_score(speech): | |
text = p(speech)["text"] | |
return reading_difficulty(text), text | |
def my_i_func(text): | |
return {"original": "", "interpretation": [('', 0.0), ('what', -0.2), ('great', 0.3), ('day', 0.5), ('', 0.0)]} | |
def gen_syns(word, level): | |
with open('balanced_synonym_data.json') as f: | |
data = json.loads(f.read()) | |
school_to_level = {"Elementary Level":'1', "Middle School Level":'2', "Highschool Level":'3', "College Level":'4'} | |
pins = wn_syns(word) | |
reko = [] | |
for i in pins: | |
if i in data[school_to_level[level]]: | |
reko.append(i) | |
str_reko = "" | |
for idx, i in enumerate(reko): | |
if idx != len(reko) -1: | |
str_reko+= i + ' | ' | |
else: | |
str_reko+= i | |
return str_reko | |
with gr.Blocks(title="Automatic Literacy and Speech Assesmen") as demo: | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Box(): | |
with gr.Column(): | |
with gr.Group(): | |
with gr.Tabs(): | |
with gr.TabItem("Text"): | |
in_text = gr.Textbox(label="In Text") | |
grade = gr.Button("Grade Your Text") | |
with gr.TabItem("Speech"): | |
audio_file = gr.Audio(source="microphone",type="filepath") | |
grade1 = gr.Button("Grade Your Speech") | |
with gr.Group(): | |
gr.Markdown("Reading Level Based Synonyms") | |
words = gr.Textbox(label="Word For Synonyms") | |
lvl = gr.Dropdown(choices=["Elementary Level", "Middle School Level", "High School Level", "College Level" ], label="Intended Reading Level For Synonym") | |
get_syns = gr.Button("Get Synonyms") | |
reccos = gr.Label() | |
with gr.Box(): | |
diff_output = gr.Label(label='Difficulty Level',show_label=True) | |
gr.Markdown("Diversity Score Across Text") | |
plotter = gr.Plot() | |
with gr.Row(): | |
with gr.Box(): | |
div_output = gr.Label(label='Diversity Score', show_label=False) | |
gr.Markdown("Diversity Heamap | Blue cells are omitted from score") | |
interpretation = gr.components.Interpretation(in_text, label="Diversity Heapmap") | |
with gr.Box(): | |
interpretation2 = gr.components.Interpretation(in_text, label="Difficulty Heapmap") | |
with gr.Row(): | |
with gr.Box(): | |
with gr.Group(): | |
target = gr.Textbox(label="Target Text") | |
with gr.Group(): | |
audio_file1 = gr.Audio(source="microphone",type="filepath") | |
b1 = gr.Button("Grade Your Pronunciation") | |
with gr.Box(): | |
some_val = gr.Label() | |
text = gr.Textbox() | |
phones = gr.Textbox() | |
grade.click(reading_difficulty, inputs=in_text, outputs=diff_output) | |
grade.click(get_mean_score, inputs=in_text, outputs=div_output) | |
grade.click(diversity_inter, inputs=in_text, outputs=interpretation) | |
grade.click(get_dif_inter, inputs=in_text, outputs=interpretation2) | |
grade.click(get_plot, inputs=in_text, outputs=plotter) | |
grade1.click(speech_to_score, inputs=audio_file, outputs=diff_output) | |
b1.click(speech_to_text, inputs=[audio_file1, target], outputs=[text, some_val, phones]) | |
get_syns.click(gen_syns, inputs=[words, lvl], outputs=reccos) | |
demo.launch(debug=True) |