Spaces:
Runtime error
Runtime error
File size: 14,473 Bytes
ea36477 a4e5c29 5c1ad26 8218bc2 a4e5c29 04a6d97 8218bc2 04a6d97 a4e5c29 c21084e a4e5c29 8218bc2 a4e5c29 04a6d97 a4e5c29 8218bc2 a4e5c29 8218bc2 c21084e 04a6d97 8218bc2 a4e5c29 068ae41 4b9a98d 8218bc2 4b9a98d 8218bc2 04a6d97 3c63f84 04a6d97 8218bc2 2edd6fc 8218bc2 a4e5c29 04a6d97 8218bc2 04a6d97 8a9f69a 04a6d97 8a9f69a 04a6d97 8a9f69a 04a6d97 8a9f69a 04a6d97 3c63f84 04a6d97 8a9f69a 04a6d97 8a9f69a 04a6d97 8218bc2 a4e5c29 04a6d97 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 2edd6fc a4e5c29 2edd6fc a4e5c29 8218bc2 04a6d97 88577eb 04a6d97 88577eb 04a6d97 88577eb 04a6d97 88577eb 04a6d97 8218bc2 a4e5c29 86dee5e a4e5c29 88577eb 04a6d97 a4e5c29 88577eb 04a6d97 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 04a6d97 a4e5c29 8218bc2 a4e5c29 04a6d97 8218bc2 04a6d97 a4e5c29 8218bc2 a4e5c29 04a6d97 a4e5c29 8218bc2 04a6d97 a4e5c29 04a6d97 7472f09 04a6d97 7472f09 04a6d97 7472f09 04a6d97 8544754 c4e0a3d 04a6d97 5c1ad26 5140414 5c1ad26 5140414 5c1ad26 04a6d97 7cfde5a 5c1ad26 04a6d97 5c1ad26 5140414 5c1ad26 04a6d97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
import csv
import string
import json
import gensim.downloader as api
import matplotlib.pyplot as plt
import nltk
import numpy as np
import pandas as pd
import gradio as gr
import readability
import seaborn as sns
import torch
from fuzzywuzzy import fuzz
from nltk.corpus import stopwords
from nltk.corpus import wordnet as wn
from nltk.tokenize import word_tokenize
from sklearn.metrics.pairwise import cosine_similarity
from transformers import DistilBertTokenizer
from transformers import pipeline
nltk.download('wordnet')
nltk.download('omw-1.4')
nltk.download('cmudict')
nltk.download('stopwords')
nltk.download('punkt')
glove_vectors = api.load('glove-wiki-gigaword-100')
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
device = torch.device('cuda' if torch.cuda.is_available else 'cpu')
# loading model
PATH = 'pytorchBERTmodel'
model = torch.load(PATH, map_location=torch.device('cpu'))
model.eval()
model.to('cpu')
p = pipeline("automatic-speech-recognition")
def wn_syns(word):
synonyms = []
for syn in wn.synsets(word):
for lm in syn.lemmas():
synonyms.append(lm.name())
return set(synonyms)
w2v = dict({})
for idx, key in enumerate(glove_vectors.key_to_index.keys()):
w2v[key] = glove_vectors.get_vector(key)
def calculate_diversity(text):
stop_words = set(stopwords.words('english'))
for i in string.punctuation:
stop_words.add(i)
tokenized_text = word_tokenize(text)
tokenized_text = list(map(lambda word: word.lower(), tokenized_text))
sim_words = {}
if len(tokenized_text) <= 1:
return 1, "More Text Required"
for idx, anc in enumerate(tokenized_text):
if anc in stop_words or not anc in w2v or anc.isdigit():
sim_words[idx] = '@'
continue
vocab = [anc]
for pos, comp in enumerate(tokenized_text):
if pos == idx:
continue
if comp in stop_words:
continue
if not comp.isalpha():
continue
try:
if cosine_similarity(w2v[anc].reshape(1, -1), w2v[comp].reshape(1, -1)) > .7 or comp in wn_syns(anc):
vocab.append(comp)
except KeyError:
continue
sim_words[idx] = vocab
print(sim_words)
scores = {}
for key, value in sim_words.items():
if len(value) == 1:
scores[key] = -1
continue
# if len(value) == 2:
# scores[key] = -1
# continue
t_sim = len(value)
t_rep = (len(value)) - (len(set(value)))
score = ((t_sim - t_rep) / t_sim) ** 2
scores[key] = score
mean_score = 0
total = 0
for value in scores.values():
if value == -1:
continue
mean_score += value
total += 1
try:
return scores, {"Diversity Score": mean_score / total}
except ZeroDivisionError:
return scores, {"Dviersity Score": "Not Enough Data"}
def get_scores(text):
return calculate_diversity(text)[0]
def get_mean_score(text):
return calculate_diversity(text)[1]
def dict_to_list(dictionary, max_size=10):
outer_list = []
inner_list = []
for key, value in dictionary.items():
inner_list.append(value)
if len(inner_list) == max_size:
outer_list.append(inner_list)
inner_list = []
if len(inner_list) > 0:
outer_list.append(inner_list)
return outer_list
def heatmap(scores, df):
total = 0
loops = 0
for ratio in scores.values():
# conditional to visualize the difference between no ratio and a 0 ratio score
if ratio != -.3:
total += ratio
loops += 1
diversity_average = total / loops
return sns.heatmap(df, cmap='gist_gray_r', vmin=-.3).set(
title='Word Diversity Score Heatmap (Average Score: ' + str(diversity_average) + ')')
def stats(text):
results = readability.getmeasures(text, lang='en')
return results
def predict(text, tokenizer=tokenizer):
model.eval()
model.to('cpu')
def prepare_data(text, tokenizer):
input_ids = []
attention_masks = []
encoded_text = tokenizer.encode_plus(
text,
truncation=True,
add_special_tokens=True,
max_length=315,
pad_to_max_length=True,
return_attention_mask=True,
return_tensors='pt'
)
input_ids.append(encoded_text['input_ids'])
attention_masks.append(encoded_text['attention_mask'])
input_ids = torch.cat(input_ids, dim=0)
attention_masks = torch.cat(attention_masks, dim=0)
return {'input_ids': input_ids, 'attention_masks': attention_masks}
tokenized_example_text = prepare_data(text, tokenizer)
with torch.no_grad():
result = model(
tokenized_example_text['input_ids'].to('cpu'),
attention_mask=tokenized_example_text['attention_masks'].to('cpu'),
return_dict=True
).logits
return result
def level(score):
if score <= 3:
return "n Elementary School"
elif 3 <= score <= 6:
return " Middle School"
elif 6 <= score <= 8:
return " High School"
else:
return " College"
def reading_difficulty(excerpt):
if len(excerpt) == 0:
return "No Text Provided"
windows = []
words = tokenizer.tokenize(excerpt)
if len(words) > 301:
for idx, text in enumerate(words):
if idx % 300 == 0:
if idx <= len(words) - 301:
x = ' '.join(words[idx: idx + 299])
windows.append(x)
win_preds = []
for text in windows:
win_preds.append(predict(text, tokenizer).item())
result = np.mean(win_preds)
score = -(result * 1.786 + 6.4) + 10
return "Difficulty Level: " + str(round(score, 2)) + '/10' + ' | A' + str(
level(score)) + " student could understand this"
else:
result = predict(excerpt).item()
score = -(result * 1.786 + 6.4) + 10
return 'Difficulty Level: ' + str(round(score, 2)) + '/10' + ' | A' + str(
level(score)) + " student could understand this"
def calculate_stats(file_name, data_index):
# unicode escape only for essays
with open(file_name, encoding='unicode_escape') as f:
information = {'lines': 0, 'words_per_sentence': 0, 'words': 0, 'syll_per_word': 0, 'characters_per_word': 0,
'reading_difficulty': 0}
reader = csv.reader(f)
for line in reader:
if len(line[data_index]) < 100:
continue
# if detect(line[data_index][len(line[data_index]) -400: len(line[data_index])-1]) == 'en':
try:
stat = stats(line[data_index])
except ValueError:
continue
information['lines'] += 1
information['words_per_sentence'] += stat['sentence info']['words_per_sentence']
information['words'] += stat['sentence info']['words']
information['syll_per_word'] += stat['sentence info']['syll_per_word']
information['characters_per_word'] += stat['sentence info']['characters_per_word']
information['reading_difficulty'] += reading_difficulty(line[data_index])
for i in information:
if i != 'lines' and i != 'words':
information[i] /= information['lines']
return information
def transcribe(audio):
# speech to text using pipeline
text = p(audio)["text"]
return text
def compute_score(target, actual):
print(target)
target = target.lower()
actual = actual.lower()
return fuzz.ratio(target, actual)
def phon(text):
alph = nltk.corpus.cmudict.dict()
text = word_tokenize(text)
pronun = []
for word in text:
try:
pronun.append(alph[word][0])
except Exception as e:
pronun.append(word)
def remove_digits(lists):
for lst in lists:
for idx, word in enumerate(lst):
lst[idx] = ''.join([letter for letter in word if not letter.isdigit()])
return lists
output = []
for i in remove_digits(pronun):
output.append('-'.join(i).lower())
return ' '.join(output)
def plot():
diversity = calculate_diversity(text)[0]
print(diversity)
df = pd.DataFrame(dict_to_list(diversity))
return heatmap(diversity, df)
def diversity_inter(text):
words = word_tokenize(text)
scores = get_scores(text)
interpret_values = [('', 0.0)]
for key, value in scores.items():
interpret_values.append((words[key], value))
interpret_values.append(('', 0.0))
print(interpret_values)
return {'original': text, 'interpretation': interpret_values}
def sliding_window(text):
words = word_tokenize(text)
improved_window = []
improved_wind_preds = []
for idx, text in enumerate(words):
if idx <= len(words) - 26:
x = ' '.join(words[idx: idx + 25])
throw_away = []
score = 0
for idx, i in enumerate(range(idx, idx + 25)):
if idx == 0:
better_prediction = -(predict(x).item() * 1.786 + 6.4) + 10
score = better_prediction
throw_away.append((better_prediction, i))
else:
throw_away.append((score, i))
improved_window.append(throw_away)
average_scores = {k: 0 for k in range(len(words) - 1)}
total_windows = {k: 0 for k in range(len(words) - 1)}
for idx, i in enumerate(improved_window):
for score, idx in i:
average_scores[idx] += score
total_windows[idx] += 1
for k, v in total_windows.items():
if v != 0:
average_scores[k] /= v
inter_scores = [v for v in average_scores.values()]
copy_list = inter_scores.copy()
print(inter_scores)
while len(inter_scores) <= len(words) - 1:
inter_scores.append(copy_list[-1])
x = list(range(len(inter_scores)))
y = inter_scores
fig, ax = plt.subplots()
ax.plot(x, y, color='orange', linewidth=2)
ax.grid(False)
plt.xlabel('Word Number', fontweight='bold')
plt.ylabel('Difficulty Score', fontweight='bold')
fig.patch.set_facecolor('white')
plt.suptitle('Difficulty Score Across Text', fontsize=14, fontweight='bold')
plt.style.use('ggplot')
fig = plt.gcf()
map = [('', 0)]
maxy = max(inter_scores)
miny = min(inter_scores)
spread = maxy - miny
for idx, i in enumerate(words):
map.append((i, (inter_scores[idx] - miny) / spread))
map.append(('', 0))
return fig, map
def get_plot(text):
return sliding_window(text)[0]
def get_dif_inter(text):
return {'original': text, 'interpretation': sliding_window(text)[1]}
def speech_to_text(speech, target):
text = p(speech)["text"]
return text.lower(), {'Pronunciation Score': compute_score(text, target) / 100}, phon(target)
def speech_to_score(speech):
text = p(speech)["text"]
return reading_difficulty(text), text
def my_i_func(text):
return {"original": "", "interpretation": [('', 0.0), ('what', -0.2), ('great', 0.3), ('day', 0.5), ('', 0.0)]}
def gen_syns(word, level):
with open('balanced_synonym_data.json') as f:
data = json.loads(f.read())
school_to_level = {"Elementary Level":'1', "Middle School Level":'2', "Highschool Level":'3', "College Level":'4'}
pins = wn_syns(word)
reko = []
for i in pins:
if i in data[school_to_level[level]]:
reko.append(i)
str_reko = ""
for idx, i in enumerate(reko):
if idx != len(reko) -1:
str_reko+= i + ' | '
else:
str_reko+= i
return str_reko
with gr.Blocks(title="Automatic Literacy and Speech Assesmen") as demo:
with gr.Column():
with gr.Row():
with gr.Box():
with gr.Column():
with gr.Group():
with gr.Tabs():
with gr.TabItem("Text"):
in_text = gr.Textbox(label="In Text")
grade = gr.Button("Grade Your Text")
with gr.TabItem("Speech"):
audio_file = gr.Audio(source="microphone",type="filepath")
grade1 = gr.Button("Grade Your Speech")
with gr.Group():
gr.Markdown("Reading Level Based Synonyms")
words = gr.Textbox(label="Word For Synonyms")
lvl = gr.Dropdown(choices=["Elementary Level", "Middle School Level", "High School Level", "College Level" ], label="Intended Reading Level For Synonym")
get_syns = gr.Button("Get Synonyms")
reccos = gr.Label()
with gr.Box():
diff_output = gr.Label(label='Difficulty Level',show_label=True)
gr.Markdown("Diversity Score Across Text")
plotter = gr.Plot()
with gr.Row():
with gr.Box():
div_output = gr.Label(label='Diversity Score', show_label=False)
gr.Markdown("Diversity Heamap | Blue cells are omitted from score")
interpretation = gr.components.Interpretation(in_text, label="Diversity Heapmap")
with gr.Box():
interpretation2 = gr.components.Interpretation(in_text, label="Difficulty Heapmap")
with gr.Row():
with gr.Box():
with gr.Group():
target = gr.Textbox(label="Target Text")
with gr.Group():
audio_file1 = gr.Audio(source="microphone",type="filepath")
b1 = gr.Button("Grade Your Pronunciation")
with gr.Box():
some_val = gr.Label()
text = gr.Textbox()
phones = gr.Textbox()
grade.click(reading_difficulty, inputs=in_text, outputs=diff_output)
grade.click(get_mean_score, inputs=in_text, outputs=div_output)
grade.click(diversity_inter, inputs=in_text, outputs=interpretation)
grade.click(get_dif_inter, inputs=in_text, outputs=interpretation2)
grade.click(get_plot, inputs=in_text, outputs=plotter)
grade1.click(speech_to_score, inputs=audio_file, outputs=diff_output)
b1.click(speech_to_text, inputs=[audio_file1, target], outputs=[text, some_val, phones])
get_syns.click(gen_syns, inputs=[words, lvl], outputs=reccos)
demo.launch(debug=True) |