podcastgen / app.py
Rausda6's picture
Update app.py
7888a85 verified
raw
history blame
17.8 kB
import gradio as gr
import random
import time
import os
import torch
from pathlib import Path
from transformers import AutoTokenizer, AutoModelForCausalLM
import json
import uuid
import edge_tts
import asyncio
import aiofiles
import mimetypes
from typing import List
from PyPDF2 import PdfReader
# Define model name clearly
MODEL_NAME = "unsloth/gemma-3-1b-pt" # HuggingFaceH4/zephyr-7b-alpha
# Device setup
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Load model and tokenizer (explicit evaluation mode)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
).eval().to(device)
# Constants
MAX_FILE_SIZE_MB = 20
MAX_FILE_SIZE_BYTES = MAX_FILE_SIZE_MB * 1024 * 1024 # Convert MB to bytes
class PodcastGenerator:
def __init__(self):
pass
async def generate_script(self, prompt: str, language: str, api_key: str, file_obj=None, progress=None):
example = """
{
"topic": "AGI",
"podcast": [
{
"speaker": 2,
"line": "So, AGI, huh? Seems like everyone's talking about it these days."
},
{
"speaker": 1,
"line": "Yeah, it's definitely having a moment, isn't it?"
},
{
"speaker": 2,
"line": "It is and for good reason, right? I mean, you've been digging into this stuff, listening to the podcasts and everything. What really stood out to you? What got you hooked?"
},
{
"speaker": 1,
"line": "It's easy to get lost in the noise, for sure."
},
{
"speaker": 2,
"line": "Exactly. So how about we try to cut through some of that, shall we?"
},
{
"speaker": 1,
"line": "Sounds like a plan."
},
{
"speaker": 2,
"line": "It certainly is and on that note, we'll wrap up this deep dive. Thanks for listening, everyone."
},
{
"speaker": 1,
"line": "Peace."
}
]
}
"""
if language == "Auto Detect":
language_instruction = "- The podcast MUST be in the same language as the user input."
else:
language_instruction = f"- The podcast MUST be in {language} language"
system_prompt = f"""
You are a professional podcast generator. Your task is to generate a professional podcast script based on the user input.
{language_instruction}
- The podcast should have 2 speakers.
- The podcast should be long.
- Do not use names for the speakers.
- The podcast should be interesting, lively, and engaging, and hook the listener from the start.
- The input text might be disorganized or unformatted, originating from sources like PDFs or text files. Ignore any formatting inconsistencies or irrelevant details; your task is to distill the essential points, identify key definitions, and highlight intriguing facts that would be suitable for discussion in a podcast.
- The script must be in JSON format.
Follow this example structure:
{example}
"""
# Build the user prompt
if prompt and file_obj:
user_prompt = f"Please generate a podcast script based on the uploaded file following user input:\n{prompt}"
elif prompt:
user_prompt = f"Please generate a podcast script based on the following user input:\n{prompt}"
else:
user_prompt = "Please generate a podcast script based on the uploaded file."
# If a file is provided, extract its text and append
if file_obj:
# enforce size limit
file_size = getattr(file_obj, 'size', os.path.getsize(file_obj.name))
if file_size > MAX_FILE_SIZE_BYTES:
raise Exception(f"File size exceeds the {MAX_FILE_SIZE_MB}MB limit. Please upload a smaller file.")
# extract text based on mime
ext = os.path.splitext(file_obj.name)[1].lower()
if ext == '.pdf':
reader = PdfReader(file_obj)
text = "\n\n".join(page.extract_text() or '' for page in reader.pages)
else:
# txt or other
if hasattr(file_obj, 'read'):
raw = file_obj.read()
else:
raw = await aiofiles.open(file_obj.name, 'rb').read()
text = raw.decode(errors='ignore')
user_prompt += f"\n\n―― FILE CONTENT ――\n{text}"
# Combine system and user prompts
prompt_text = system_prompt + "\n" + user_prompt
try:
if progress:
progress(0.3, "Generating podcast script...")
def hf_generate(prompt_text):
inputs = tokenizer(prompt_text, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=1024,
do_sample=True,
temperature=1.0
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
generated_text = await asyncio.wait_for(
asyncio.to_thread(hf_generate, prompt_text),
timeout=60
)
except asyncio.TimeoutError:
raise Exception("The script generation request timed out. Please try again later.")
except Exception as e:
raise Exception(f"Failed to generate podcast script: {e}")
if progress:
progress(0.4, "Script generated successfully!")
return json.loads(generated_text)
# ... rest of class unchanged ...
# ... rest of class unchanged ...
async def _read_file_bytes(self, file_obj) -> bytes:
"""Read file bytes from a file object"""
# Check file size before reading
if hasattr(file_obj, 'size'):
file_size = file_obj.size
else:
file_size = os.path.getsize(file_obj.name)
if file_size > MAX_FILE_SIZE_BYTES:
raise Exception(f"File size exceeds the {MAX_FILE_SIZE_MB}MB limit. Please upload a smaller file.")
if hasattr(file_obj, 'read'):
return file_obj.read()
else:
async with aiofiles.open(file_obj.name, 'rb') as f:
return await f.read()
def _get_mime_type(self, filename: str) -> str:
"""Determine MIME type based on file extension"""
ext = os.path.splitext(filename)[1].lower()
if ext == '.pdf':
return "application/pdf"
elif ext == '.txt':
return "text/plain"
else:
# Fallback to the default mime type detector
mime_type, _ = mimetypes.guess_type(filename)
return mime_type or "application/octet-stream"
async def tts_generate(self, text: str, speaker: int, speaker1: str, speaker2: str) -> str:
voice = speaker1 if speaker == 1 else speaker2
speech = edge_tts.Communicate(text, voice)
temp_filename = f"temp_{uuid.uuid4()}.wav"
try:
# Add timeout to TTS generation
await asyncio.wait_for(speech.save(temp_filename), timeout=30) # 30 seconds timeout
return temp_filename
except asyncio.TimeoutError:
if os.path.exists(temp_filename):
os.remove(temp_filename)
raise Exception("Text-to-speech generation timed out. Please try with a shorter text.")
except Exception as e:
if os.path.exists(temp_filename):
os.remove(temp_filename)
raise e
async def combine_audio_files(self, audio_files: List[str], progress=None) -> str:
if progress:
progress(0.9, "Combining audio files...")
combined_audio = AudioSegment.empty()
for audio_file in audio_files:
combined_audio += AudioSegment.from_file(audio_file)
os.remove(audio_file) # Clean up temporary files
output_filename = f"output_{uuid.uuid4()}.wav"
combined_audio.export(output_filename, format="wav")
if progress:
progress(1.0, "Podcast generated successfully!")
return output_filename
async def generate_podcast(self, input_text: str, language: str, speaker1: str, speaker2: str, api_key: str, file_obj=None, progress=None) -> str:
try:
if progress:
progress(0.1, "Starting podcast generation...")
# Set overall timeout for the entire process
return await asyncio.wait_for(
self._generate_podcast_internal(input_text, language, speaker1, speaker2, api_key, file_obj, progress),
timeout=600 # 10 minutes total timeout
)
except asyncio.TimeoutError:
raise Exception("The podcast generation process timed out. Please try with shorter text or try again later.")
except Exception as e:
raise Exception(f"Error generating podcast: {str(e)}")
async def _generate_podcast_internal(self, input_text: str, language: str, speaker1: str, speaker2: str, api_key: str, file_obj=None, progress=None) -> str:
if progress:
progress(0.2, "Generating podcast script...")
podcast_json = await self.generate_script(input_text, language, api_key, file_obj, progress)
if progress:
progress(0.5, "Converting text to speech...")
# Process TTS in batches for concurrent processing
audio_files = []
total_lines = len(podcast_json['podcast'])
# Define batch size to control concurrency
batch_size = 10 # Adjust based on system resources
# Process in batches
for batch_start in range(0, total_lines, batch_size):
batch_end = min(batch_start + batch_size, total_lines)
batch = podcast_json['podcast'][batch_start:batch_end]
# Create tasks for concurrent processing
tts_tasks = []
for item in batch:
tts_task = self.tts_generate(item['line'], item['speaker'], speaker1, speaker2)
tts_tasks.append(tts_task)
try:
# Process batch concurrently
batch_results = await asyncio.gather(*tts_tasks, return_exceptions=True)
# Check for exceptions and handle results
for i, result in enumerate(batch_results):
if isinstance(result, Exception):
# Clean up any files already created
for file in audio_files:
if os.path.exists(file):
os.remove(file)
raise Exception(f"Error generating speech: {str(result)}")
else:
audio_files.append(result)
# Update progress
if progress:
current_progress = 0.5 + (0.4 * (batch_end / total_lines))
progress(current_progress, f"Processed {batch_end}/{total_lines} speech segments...")
except Exception as e:
# Clean up any files already created
for file in audio_files:
if os.path.exists(file):
os.remove(file)
raise Exception(f"Error in batch TTS generation: {str(e)}")
combined_audio = await self.combine_audio_files(audio_files, progress)
return combined_audio
async def process_input(input_text: str, input_file, language: str, speaker1: str, speaker2: str, api_key: str = "", progress=None) -> str:
start_time = time.time()
voice_names = {
"Andrew - English (United States)": "en-US-AndrewMultilingualNeural",
"Ava - English (United States)": "en-US-AvaMultilingualNeural",
"Brian - English (United States)": "en-US-BrianMultilingualNeural",
"Emma - English (United States)": "en-US-EmmaMultilingualNeural",
"Florian - German (Germany)": "de-DE-FlorianMultilingualNeural",
"Seraphina - German (Germany)": "de-DE-SeraphinaMultilingualNeural",
"Remy - French (France)": "fr-FR-RemyMultilingualNeural",
"Vivienne - French (France)": "fr-FR-VivienneMultilingualNeural"
}
speaker1 = voice_names[speaker1]
speaker2 = voice_names[speaker2]
try:
if progress:
progress(0.05, "Processing input...")
if not api_key:
api_key = "saf" # os.getenv("GENAI_API_KEY")
if not api_key:
raise Exception("No API key provided. Please provide a Gemini API key.")
podcast_generator = PodcastGenerator()
podcast = await podcast_generator.generate_podcast(input_text, language, speaker1, speaker2, api_key, input_file, progress)
end_time = time.time()
print(f"Total podcast generation time: {end_time - start_time:.2f} seconds")
return podcast
except Exception as e:
# Ensure we show a user-friendly error
error_msg = str(e)
if "rate limit" in error_msg.lower():
raise Exception("Rate limit exceeded. Please try again later or use your own API key.")
elif "timeout" in error_msg.lower():
raise Exception("The request timed out. This could be due to server load or the length of your input. Please try again with shorter text.")
else:
raise Exception(f"Error: {error_msg}")
# Gradio UI
def generate_podcast_gradio(input_text, input_file, language, speaker1, speaker2, api_key):
# Handle the file if uploaded
file_obj = input_file if input_file is not None else None
try:
# Run the async function in the event loop
return asyncio.run(process_input(
input_text,
file_obj,
language,
speaker1,
speaker2,
api_key,
# internally process_input still accepts a progress callback
# but since we're using Gradio's built-in bar, just pass a no-op:
lambda *_: None
))
except Exception as e:
raise gr.Error(str(e))
def main():
with gr.Blocks(title="PodcastGen 🎙️") as demo:
gr.Markdown(
"""
# PodcastGen 🎙️
Generate a 2-speaker podcast from text or PDF!
"""
)
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input Text", lines=10, placeholder="Enter podcast topic or paste text here...", elem_id="input_text")
input_file = gr.File(label="Or Upload a PDF or TXT file", file_types=[".pdf", ".txt"])
with gr.Column():
language = gr.Dropdown(
label="Podcast Language",
choices=[
"Auto Detect",
"English",
"German",
"French",
"Spanish",
"Italian",
"Dutch",
"Portuguese",
"Russian",
"Chinese",
"Japanese",
"Korean",
"Other",
],
value="Auto Detect"
)
speaker1 = gr.Dropdown(
label="Speaker 1 Voice",
choices=[
"Andrew - English (United States)",
"Ava - English (United States)",
"Brian - English (United States)",
"Emma - English (United States)",
"Florian - German (Germany)",
"Seraphina - German (Germany)",
"Remy - French (France)",
"Vivienne - French (France)"
],
value="Andrew - English (United States)",
)
speaker2 = gr.Dropdown(
label="Speaker 2 Voice",
choices=[
"Andrew - English (United States)",
"Ava - English (United States)",
"Brian - English (United States)",
"Emma - English (United States)",
"Florian - German (Germany)",
"Seraphina - German (Germany)",
"Remy - French (France)",
"Vivienne - French (France)"
],
value="Ava - English (United States)",
)
api_key = gr.Textbox(label="Gemini API Key (Optional)", type="password", placeholder="Needed only if you're getting rate limited.")
generate_btn = gr.Button("Generate Podcast 🎙️", variant="primary")
output_audio = gr.Audio(label="Generated Podcast", type="filepath", format="wav", elem_id="output_audio")
generate_btn.click(
fn=generate_podcast_gradio,
inputs=[input_text, input_file, language, speaker1, speaker2, api_key],
outputs=output_audio,
show_progress=True
)
demo.queue()
demo.launch(server_name="0.0.0.0", debug=True)
if __name__ == "__main__":
main()