Spaces:
Paused
Paused
File size: 17,754 Bytes
9db7bb3 7faf9f3 9db7bb3 7faf9f3 b8defd5 7faf9f3 cda1077 043971a 8b21b4a 5e62778 8b21b4a cda1077 7888a85 eaeaf35 8b21b4a eaeaf35 7faf9f3 8b21b4a eaeaf35 4d716d2 eaeaf35 0bac8f8 eaeaf35 cda1077 eaeaf35 7faf9f3 eaeaf35 8b21b4a eaeaf35 7faf9f3 8b21b4a eaeaf35 8b21b4a eaeaf35 8b21b4a eaeaf35 7faf9f3 8b21b4a 7888a85 7faf9f3 eaeaf35 7faf9f3 eaeaf35 7faf9f3 eaeaf35 7faf9f3 eaeaf35 cda1077 eaeaf35 7faf9f3 eaeaf35 7faf9f3 eaeaf35 7faf9f3 eaeaf35 b716996 eaeaf35 1d07d5f eaeaf35 b25f18d 1d07d5f b25f18d 1d07d5f b25f18d 2d415dd eaeaf35 b25f18d eaeaf35 48be2f8 eaeaf35 48be2f8 eaeaf35 48be2f8 eaeaf35 b3144a5 48be2f8 02c2237 5e62778 eaeaf35 8cfff61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import gradio as gr
import random
import time
import os
import torch
from pathlib import Path
from transformers import AutoTokenizer, AutoModelForCausalLM
import json
import uuid
import edge_tts
import asyncio
import aiofiles
import mimetypes
from typing import List
from PyPDF2 import PdfReader
# Define model name clearly
MODEL_NAME = "unsloth/gemma-3-1b-pt" # HuggingFaceH4/zephyr-7b-alpha
# Device setup
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Load model and tokenizer (explicit evaluation mode)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
).eval().to(device)
# Constants
MAX_FILE_SIZE_MB = 20
MAX_FILE_SIZE_BYTES = MAX_FILE_SIZE_MB * 1024 * 1024 # Convert MB to bytes
class PodcastGenerator:
def __init__(self):
pass
async def generate_script(self, prompt: str, language: str, api_key: str, file_obj=None, progress=None):
example = """
{
"topic": "AGI",
"podcast": [
{
"speaker": 2,
"line": "So, AGI, huh? Seems like everyone's talking about it these days."
},
{
"speaker": 1,
"line": "Yeah, it's definitely having a moment, isn't it?"
},
{
"speaker": 2,
"line": "It is and for good reason, right? I mean, you've been digging into this stuff, listening to the podcasts and everything. What really stood out to you? What got you hooked?"
},
{
"speaker": 1,
"line": "It's easy to get lost in the noise, for sure."
},
{
"speaker": 2,
"line": "Exactly. So how about we try to cut through some of that, shall we?"
},
{
"speaker": 1,
"line": "Sounds like a plan."
},
{
"speaker": 2,
"line": "It certainly is and on that note, we'll wrap up this deep dive. Thanks for listening, everyone."
},
{
"speaker": 1,
"line": "Peace."
}
]
}
"""
if language == "Auto Detect":
language_instruction = "- The podcast MUST be in the same language as the user input."
else:
language_instruction = f"- The podcast MUST be in {language} language"
system_prompt = f"""
You are a professional podcast generator. Your task is to generate a professional podcast script based on the user input.
{language_instruction}
- The podcast should have 2 speakers.
- The podcast should be long.
- Do not use names for the speakers.
- The podcast should be interesting, lively, and engaging, and hook the listener from the start.
- The input text might be disorganized or unformatted, originating from sources like PDFs or text files. Ignore any formatting inconsistencies or irrelevant details; your task is to distill the essential points, identify key definitions, and highlight intriguing facts that would be suitable for discussion in a podcast.
- The script must be in JSON format.
Follow this example structure:
{example}
"""
# Build the user prompt
if prompt and file_obj:
user_prompt = f"Please generate a podcast script based on the uploaded file following user input:\n{prompt}"
elif prompt:
user_prompt = f"Please generate a podcast script based on the following user input:\n{prompt}"
else:
user_prompt = "Please generate a podcast script based on the uploaded file."
# If a file is provided, extract its text and append
if file_obj:
# enforce size limit
file_size = getattr(file_obj, 'size', os.path.getsize(file_obj.name))
if file_size > MAX_FILE_SIZE_BYTES:
raise Exception(f"File size exceeds the {MAX_FILE_SIZE_MB}MB limit. Please upload a smaller file.")
# extract text based on mime
ext = os.path.splitext(file_obj.name)[1].lower()
if ext == '.pdf':
reader = PdfReader(file_obj)
text = "\n\n".join(page.extract_text() or '' for page in reader.pages)
else:
# txt or other
if hasattr(file_obj, 'read'):
raw = file_obj.read()
else:
raw = await aiofiles.open(file_obj.name, 'rb').read()
text = raw.decode(errors='ignore')
user_prompt += f"\n\nโโ FILE CONTENT โโ\n{text}"
# Combine system and user prompts
prompt_text = system_prompt + "\n" + user_prompt
try:
if progress:
progress(0.3, "Generating podcast script...")
def hf_generate(prompt_text):
inputs = tokenizer(prompt_text, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=1024,
do_sample=True,
temperature=1.0
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
generated_text = await asyncio.wait_for(
asyncio.to_thread(hf_generate, prompt_text),
timeout=60
)
except asyncio.TimeoutError:
raise Exception("The script generation request timed out. Please try again later.")
except Exception as e:
raise Exception(f"Failed to generate podcast script: {e}")
if progress:
progress(0.4, "Script generated successfully!")
return json.loads(generated_text)
# ... rest of class unchanged ...
# ... rest of class unchanged ...
async def _read_file_bytes(self, file_obj) -> bytes:
"""Read file bytes from a file object"""
# Check file size before reading
if hasattr(file_obj, 'size'):
file_size = file_obj.size
else:
file_size = os.path.getsize(file_obj.name)
if file_size > MAX_FILE_SIZE_BYTES:
raise Exception(f"File size exceeds the {MAX_FILE_SIZE_MB}MB limit. Please upload a smaller file.")
if hasattr(file_obj, 'read'):
return file_obj.read()
else:
async with aiofiles.open(file_obj.name, 'rb') as f:
return await f.read()
def _get_mime_type(self, filename: str) -> str:
"""Determine MIME type based on file extension"""
ext = os.path.splitext(filename)[1].lower()
if ext == '.pdf':
return "application/pdf"
elif ext == '.txt':
return "text/plain"
else:
# Fallback to the default mime type detector
mime_type, _ = mimetypes.guess_type(filename)
return mime_type or "application/octet-stream"
async def tts_generate(self, text: str, speaker: int, speaker1: str, speaker2: str) -> str:
voice = speaker1 if speaker == 1 else speaker2
speech = edge_tts.Communicate(text, voice)
temp_filename = f"temp_{uuid.uuid4()}.wav"
try:
# Add timeout to TTS generation
await asyncio.wait_for(speech.save(temp_filename), timeout=30) # 30 seconds timeout
return temp_filename
except asyncio.TimeoutError:
if os.path.exists(temp_filename):
os.remove(temp_filename)
raise Exception("Text-to-speech generation timed out. Please try with a shorter text.")
except Exception as e:
if os.path.exists(temp_filename):
os.remove(temp_filename)
raise e
async def combine_audio_files(self, audio_files: List[str], progress=None) -> str:
if progress:
progress(0.9, "Combining audio files...")
combined_audio = AudioSegment.empty()
for audio_file in audio_files:
combined_audio += AudioSegment.from_file(audio_file)
os.remove(audio_file) # Clean up temporary files
output_filename = f"output_{uuid.uuid4()}.wav"
combined_audio.export(output_filename, format="wav")
if progress:
progress(1.0, "Podcast generated successfully!")
return output_filename
async def generate_podcast(self, input_text: str, language: str, speaker1: str, speaker2: str, api_key: str, file_obj=None, progress=None) -> str:
try:
if progress:
progress(0.1, "Starting podcast generation...")
# Set overall timeout for the entire process
return await asyncio.wait_for(
self._generate_podcast_internal(input_text, language, speaker1, speaker2, api_key, file_obj, progress),
timeout=600 # 10 minutes total timeout
)
except asyncio.TimeoutError:
raise Exception("The podcast generation process timed out. Please try with shorter text or try again later.")
except Exception as e:
raise Exception(f"Error generating podcast: {str(e)}")
async def _generate_podcast_internal(self, input_text: str, language: str, speaker1: str, speaker2: str, api_key: str, file_obj=None, progress=None) -> str:
if progress:
progress(0.2, "Generating podcast script...")
podcast_json = await self.generate_script(input_text, language, api_key, file_obj, progress)
if progress:
progress(0.5, "Converting text to speech...")
# Process TTS in batches for concurrent processing
audio_files = []
total_lines = len(podcast_json['podcast'])
# Define batch size to control concurrency
batch_size = 10 # Adjust based on system resources
# Process in batches
for batch_start in range(0, total_lines, batch_size):
batch_end = min(batch_start + batch_size, total_lines)
batch = podcast_json['podcast'][batch_start:batch_end]
# Create tasks for concurrent processing
tts_tasks = []
for item in batch:
tts_task = self.tts_generate(item['line'], item['speaker'], speaker1, speaker2)
tts_tasks.append(tts_task)
try:
# Process batch concurrently
batch_results = await asyncio.gather(*tts_tasks, return_exceptions=True)
# Check for exceptions and handle results
for i, result in enumerate(batch_results):
if isinstance(result, Exception):
# Clean up any files already created
for file in audio_files:
if os.path.exists(file):
os.remove(file)
raise Exception(f"Error generating speech: {str(result)}")
else:
audio_files.append(result)
# Update progress
if progress:
current_progress = 0.5 + (0.4 * (batch_end / total_lines))
progress(current_progress, f"Processed {batch_end}/{total_lines} speech segments...")
except Exception as e:
# Clean up any files already created
for file in audio_files:
if os.path.exists(file):
os.remove(file)
raise Exception(f"Error in batch TTS generation: {str(e)}")
combined_audio = await self.combine_audio_files(audio_files, progress)
return combined_audio
async def process_input(input_text: str, input_file, language: str, speaker1: str, speaker2: str, api_key: str = "", progress=None) -> str:
start_time = time.time()
voice_names = {
"Andrew - English (United States)": "en-US-AndrewMultilingualNeural",
"Ava - English (United States)": "en-US-AvaMultilingualNeural",
"Brian - English (United States)": "en-US-BrianMultilingualNeural",
"Emma - English (United States)": "en-US-EmmaMultilingualNeural",
"Florian - German (Germany)": "de-DE-FlorianMultilingualNeural",
"Seraphina - German (Germany)": "de-DE-SeraphinaMultilingualNeural",
"Remy - French (France)": "fr-FR-RemyMultilingualNeural",
"Vivienne - French (France)": "fr-FR-VivienneMultilingualNeural"
}
speaker1 = voice_names[speaker1]
speaker2 = voice_names[speaker2]
try:
if progress:
progress(0.05, "Processing input...")
if not api_key:
api_key = "saf" # os.getenv("GENAI_API_KEY")
if not api_key:
raise Exception("No API key provided. Please provide a Gemini API key.")
podcast_generator = PodcastGenerator()
podcast = await podcast_generator.generate_podcast(input_text, language, speaker1, speaker2, api_key, input_file, progress)
end_time = time.time()
print(f"Total podcast generation time: {end_time - start_time:.2f} seconds")
return podcast
except Exception as e:
# Ensure we show a user-friendly error
error_msg = str(e)
if "rate limit" in error_msg.lower():
raise Exception("Rate limit exceeded. Please try again later or use your own API key.")
elif "timeout" in error_msg.lower():
raise Exception("The request timed out. This could be due to server load or the length of your input. Please try again with shorter text.")
else:
raise Exception(f"Error: {error_msg}")
# Gradio UI
def generate_podcast_gradio(input_text, input_file, language, speaker1, speaker2, api_key):
# Handle the file if uploaded
file_obj = input_file if input_file is not None else None
try:
# Run the async function in the event loop
return asyncio.run(process_input(
input_text,
file_obj,
language,
speaker1,
speaker2,
api_key,
# internally process_input still accepts a progress callback
# but since we're using Gradio's built-in bar, just pass a no-op:
lambda *_: None
))
except Exception as e:
raise gr.Error(str(e))
def main():
with gr.Blocks(title="PodcastGen ๐๏ธ") as demo:
gr.Markdown(
"""
# PodcastGen ๐๏ธ
Generate a 2-speaker podcast from text or PDF!
"""
)
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input Text", lines=10, placeholder="Enter podcast topic or paste text here...", elem_id="input_text")
input_file = gr.File(label="Or Upload a PDF or TXT file", file_types=[".pdf", ".txt"])
with gr.Column():
language = gr.Dropdown(
label="Podcast Language",
choices=[
"Auto Detect",
"English",
"German",
"French",
"Spanish",
"Italian",
"Dutch",
"Portuguese",
"Russian",
"Chinese",
"Japanese",
"Korean",
"Other",
],
value="Auto Detect"
)
speaker1 = gr.Dropdown(
label="Speaker 1 Voice",
choices=[
"Andrew - English (United States)",
"Ava - English (United States)",
"Brian - English (United States)",
"Emma - English (United States)",
"Florian - German (Germany)",
"Seraphina - German (Germany)",
"Remy - French (France)",
"Vivienne - French (France)"
],
value="Andrew - English (United States)",
)
speaker2 = gr.Dropdown(
label="Speaker 2 Voice",
choices=[
"Andrew - English (United States)",
"Ava - English (United States)",
"Brian - English (United States)",
"Emma - English (United States)",
"Florian - German (Germany)",
"Seraphina - German (Germany)",
"Remy - French (France)",
"Vivienne - French (France)"
],
value="Ava - English (United States)",
)
api_key = gr.Textbox(label="Gemini API Key (Optional)", type="password", placeholder="Needed only if you're getting rate limited.")
generate_btn = gr.Button("Generate Podcast ๐๏ธ", variant="primary")
output_audio = gr.Audio(label="Generated Podcast", type="filepath", format="wav", elem_id="output_audio")
generate_btn.click(
fn=generate_podcast_gradio,
inputs=[input_text, input_file, language, speaker1, speaker2, api_key],
outputs=output_audio,
show_progress=True
)
demo.queue()
demo.launch(server_name="0.0.0.0", debug=True)
if __name__ == "__main__":
main() |