podcastgen / app.py
Rausda6's picture
Update app.py
2720196 verified
raw
history blame
16.7 kB
import gradio as gr
from pydub import AudioSegment
import json
import uuid
import edge_tts
import asyncio
import aiofiles
import os
import time
import mimetypes
import torch
from typing import List, Dict
from transformers import AutoTokenizer, AutoModelForCausalLM
# Constants
MAX_FILE_SIZE_MB = 20
MAX_FILE_SIZE_BYTES = MAX_FILE_SIZE_MB * 1024 * 1024 # Convert MB to bytes
MODEL_ID = "HuggingFaceH4/zephyr-7b-alpha"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto"
).eval()
class PodcastGenerator:
def __init__(self):
pass
async def generate_script(self, prompt: str, language: str, api_key: str, file_obj=None, progress=None) -> Dict:
example = """
{
"topic": "AGI",
"podcast": [
{
"speaker": 2,
"line": "So, AGI, huh? Seems like everyone's talking about it these days."
},
{
"speaker": 1,
"line": "Yeah, it's definitely having a moment, isn't it?"
},
{
"speaker": 2,
"line": "It is and for good reason, right? I mean, you've been digging into this stuff, listening to the podcasts and everything. What really stood out to you? What got you hooked?"
},
{
"speaker": 1,
"line": "I like that. It really is."
},
{
"speaker": 2,
"line": "And honestly, that's a responsibility that extends beyond just the researchers and the policymakers."
},
{
"speaker": 1,
"line": "100%"
},
{
"speaker": 2,
"line": "So to everyone listening out there I'll leave you with this. As AGI continues to develop, what role do you want to play in shaping its future?"
},
{
"speaker": 1,
"line": "That's a question worth pondering."
},
{
"speaker": 2,
"line": "It certainly is and on that note, we'll wrap up this deep dive. Thanks for listening, everyone."
},
{
"speaker": 1,
"line": "Peace."
}
]
}
"""
if language == "Auto Detect":
language_instruction = "- The podcast MUST be in the same language as the user input."
else:
language_instruction = f"- The podcast MUST be in {language} language"
system_prompt = f"""
You are a professional podcast generator. Your task is to generate a professional podcast script based on the user input.
{language_instruction}
- The podcast should have 2 speakers.
- The podcast should be long.
- Do not use names for the speakers.
- The podcast should be interesting, lively, and engaging, and hook the listener from the start.
- The input text might be disorganized or unformatted, originating from sources like PDFs or text files. Ignore any formatting inconsistencies or irrelevant details; your task is to distill the essential points, identify key definitions, and highlight intriguing facts that would be suitable for discussion in a podcast.
- The script must be in JSON format.
Follow this example structure:
{example}
"""
# Construct system and user prompt
if prompt and file_obj:
user_prompt = f"Please generate a podcast script based on the uploaded file following user input:\n{prompt}"
elif prompt:
user_prompt = f"Please generate a podcast script based on the following user input:\n{prompt}"
else:
user_prompt = "Please generate a podcast script based on the uploaded file."
# NOTE: file_obj cannot be passed to a text-only LLM
if file_obj:
print("Warning: Uploaded file is ignored in this version because external LLM does not support file input.")
# Build prompt
full_prompt = f"""{system_prompt}
{user_prompt}
Return the result strictly as a JSON object in the format:
{{
"topic": "{prompt}",
"podcast": [
{{ "speaker": 1, "line": "..." }},
{{ "speaker": 2, "line": "..." }}
]
}}
"""
try:
if progress:
progress(0.3, "Generating podcast script...")
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
output = model.generate(**inputs, max_new_tokens=1024)
text = tokenizer.decode(output[0], skip_special_tokens=True)
except Exception as e:
raise Exception(f"Failed to generate podcast script: {e}")
print(f"Generated podcast script:\n{text}")
if progress:
progress(0.4, "Script generated successfully!")
try:
return json.loads(text)
except json.JSONDecodeError:
raise Exception("The model did not return valid JSON. Please refine the prompt.")
async def _read_file_bytes(self, file_obj) -> bytes:
"""Read file bytes from a file object"""
# Check file size before reading
if hasattr(file_obj, 'size'):
file_size = file_obj.size
else:
file_size = os.path.getsize(file_obj.name)
if file_size > MAX_FILE_SIZE_BYTES:
raise Exception(f"File size exceeds the {MAX_FILE_SIZE_MB}MB limit. Please upload a smaller file.")
if hasattr(file_obj, 'read'):
return file_obj.read()
else:
async with aiofiles.open(file_obj.name, 'rb') as f:
return await f.read()
def _get_mime_type(self, filename: str) -> str:
"""Determine MIME type based on file extension"""
ext = os.path.splitext(filename)[1].lower()
if ext == '.pdf':
return "application/pdf"
elif ext == '.txt':
return "text/plain"
else:
# Fallback to the default mime type detector
mime_type, _ = mimetypes.guess_type(filename)
return mime_type or "application/octet-stream"
async def tts_generate(self, text: str, speaker: int, speaker1: str, speaker2: str) -> str:
voice = speaker1 if speaker == 1 else speaker2
speech = edge_tts.Communicate(text, voice)
temp_filename = f"temp_{uuid.uuid4()}.wav"
try:
# Add timeout to TTS generation
await asyncio.wait_for(speech.save(temp_filename), timeout=30) # 30 seconds timeout
return temp_filename
except asyncio.TimeoutError:
if os.path.exists(temp_filename):
os.remove(temp_filename)
raise Exception("Text-to-speech generation timed out. Please try with a shorter text.")
except Exception as e:
if os.path.exists(temp_filename):
os.remove(temp_filename)
raise e
async def combine_audio_files(self, audio_files: List[str], progress=None) -> str:
if progress:
progress(0.9, "Combining audio files...")
combined_audio = AudioSegment.empty()
for audio_file in audio_files:
combined_audio += AudioSegment.from_file(audio_file)
os.remove(audio_file) # Clean up temporary files
output_filename = f"output_{uuid.uuid4()}.wav"
combined_audio.export(output_filename, format="wav")
if progress:
progress(1.0, "Podcast generated successfully!")
return output_filename
async def generate_podcast(self, input_text: str, language: str, speaker1: str, speaker2: str, api_key: str, file_obj=None, progress=None) -> str:
try:
if progress:
progress(0.1, "Starting podcast generation...")
# Set overall timeout for the entire process
return await asyncio.wait_for(
self._generate_podcast_internal(input_text, language, speaker1, speaker2, api_key, file_obj, progress),
timeout=600 # 10 minutes total timeout
)
except asyncio.TimeoutError:
raise Exception("The podcast generation process timed out. Please try with shorter text or try again later.")
except Exception as e:
raise Exception(f"Error generating podcast: {str(e)}")
async def _generate_podcast_internal(self, input_text: str, language: str, speaker1: str, speaker2: str, api_key: str, file_obj=None, progress=None) -> str:
if progress:
progress(0.2, "Generating podcast script...")
podcast_json = await self.generate_script(input_text, language, api_key, file_obj, progress)
if progress:
progress(0.5, "Converting text to speech...")
# Process TTS in batches for concurrent processing
audio_files = []
total_lines = len(podcast_json['podcast'])
# Define batch size to control concurrency
batch_size = 10 # Adjust based on system resources
# Process in batches
for batch_start in range(0, total_lines, batch_size):
batch_end = min(batch_start + batch_size, total_lines)
batch = podcast_json['podcast'][batch_start:batch_end]
# Create tasks for concurrent processing
tts_tasks = []
for item in batch:
tts_task = self.tts_generate(item['line'], item['speaker'], speaker1, speaker2)
tts_tasks.append(tts_task)
try:
# Process batch concurrently
batch_results = await asyncio.gather(*tts_tasks, return_exceptions=True)
# Check for exceptions and handle results
for i, result in enumerate(batch_results):
if isinstance(result, Exception):
# Clean up any files already created
for file in audio_files:
if os.path.exists(file):
os.remove(file)
raise Exception(f"Error generating speech: {str(result)}")
else:
audio_files.append(result)
# Update progress
if progress:
current_progress = 0.5 + (0.4 * (batch_end / total_lines))
progress(current_progress, f"Processed {batch_end}/{total_lines} speech segments...")
except Exception as e:
# Clean up any files already created
for file in audio_files:
if os.path.exists(file):
os.remove(file)
raise Exception(f"Error in batch TTS generation: {str(e)}")
combined_audio = await self.combine_audio_files(audio_files, progress)
return combined_audio
async def process_input(input_text: str, input_file, language: str, speaker1: str, speaker2: str, api_key: str = "", progress=None) -> str:
start_time = time.time()
voice_names = {
"Andrew - English (United States)": "en-US-AndrewMultilingualNeural",
"Ava - English (United States)": "en-US-AvaMultilingualNeural",
"Brian - English (United States)": "en-US-BrianMultilingualNeural",
"Emma - English (United States)": "en-US-EmmaMultilingualNeural",
"Florian - German (Germany)": "de-DE-FlorianMultilingualNeural",
"Seraphina - German (Germany)": "de-DE-SeraphinaMultilingualNeural",
"Remy - French (France)": "fr-FR-RemyMultilingualNeural",
"Vivienne - French (France)": "fr-FR-VivienneMultilingualNeural"
}
speaker1 = voice_names[speaker1]
speaker2 = voice_names[speaker2]
try:
if progress:
progress(0.05, "Processing input...")
if not api_key:
api_key = os.getenv("GENAI_API_KEY")
if not api_key:
raise Exception("No API key provided. Please provide a Gemini API key.")
podcast_generator = PodcastGenerator()
podcast = await podcast_generator.generate_podcast(input_text, language, speaker1, speaker2, api_key, input_file, progress)
end_time = time.time()
print(f"Total podcast generation time: {end_time - start_time:.2f} seconds")
return podcast
except Exception as e:
# Ensure we show a user-friendly error
error_msg = str(e)
if "rate limit" in error_msg.lower():
raise Exception("Rate limit exceeded. Please try again later or use your own API key.")
elif "timeout" in error_msg.lower():
raise Exception("The request timed out. This could be due to server load or the length of your input. Please try again with shorter text.")
else:
raise Exception(f"Error: {error_msg}")
# Gradio UI
def generate_podcast_gradio(input_text, input_file, language, speaker1, speaker2, api_key, progress=gr.Progress()):
# Handle the file if uploaded
file_obj = None
if input_file is not None:
file_obj = input_file
# Use the progress function from Gradio
def progress_callback(value, text):
progress(value, text)
# Run the async function in the event loop
result = asyncio.run(process_input(
input_text,
file_obj,
language,
speaker1,
speaker2,
api_key,
progress_callback
))
return result
def main():
# Define language options
language_options = [
"Auto Detect",
"Afrikaans", "Albanian", "Amharic", "Arabic", "Armenian", "Azerbaijani",
"Bahasa Indonesian", "Bangla", "Basque", "Bengali", "Bosnian", "Bulgarian",
"Burmese", "Catalan", "Chinese Cantonese", "Chinese Mandarin",
"Chinese Taiwanese", "Croatian", "Czech", "Danish", "Dutch", "English",
"Estonian", "Filipino", "Finnish", "French", "Galician", "Georgian",
"German", "Greek", "Hebrew", "Hindi", "Hungarian", "Icelandic", "Irish",
"Italian", "Japanese", "Javanese", "Kannada", "Kazakh", "Khmer", "Korean",
"Lao", "Latvian", "Lithuanian", "Macedonian", "Malay", "Malayalam",
"Maltese", "Mongolian", "Nepali", "Norwegian Bokmål", "Pashto", "Persian",
"Polish", "Portuguese", "Romanian", "Russian", "Serbian", "Sinhala",
"Slovak", "Slovene", "Somali", "Spanish", "Sundanese", "Swahili",
"Swedish", "Tamil", "Telugu", "Thai", "Turkish", "Ukrainian", "Urdu",
"Uzbek", "Vietnamese", "Welsh", "Zulu"
]
# Define voice options
voice_options = [
"Andrew - English (United States)",
"Ava - English (United States)",
"Brian - English (United States)",
"Emma - English (United States)",
"Florian - German (Germany)",
"Seraphina - German (Germany)",
"Remy - French (France)",
"Vivienne - French (France)"
]
# Create Gradio interface
with gr.Blocks(title="PodcastGen 🎙️") as demo:
gr.Markdown("# PodcastGen 🎙️")
gr.Markdown("Generate a 2-speaker podcast from text input or documents!")
with gr.Row():
with gr.Column(scale=2):
input_text = gr.Textbox(label="Input Text", lines=10, placeholder="Enter text for podcast generation...")
with gr.Column(scale=1):
input_file = gr.File(label="Or Upload a PDF or TXT file", file_types=[".pdf", ".txt"])
with gr.Row():
with gr.Column():
api_key = gr.Textbox(label="Your Gemini API Key (Optional)", placeholder="Enter API key here if you're getting rate limited", type="password")
language = gr.Dropdown(label="Language", choices=language_options, value="Auto Detect")
with gr.Column():
speaker1 = gr.Dropdown(label="Speaker 1 Voice", choices=voice_options, value="Andrew - English (United States)")
speaker2 = gr.Dropdown(label="Speaker 2 Voice", choices=voice_options, value="Ava - English (United States)")
generate_btn = gr.Button("Generate Podcast", variant="primary")
with gr.Row():
output_audio = gr.Audio(label="Generated Podcast", type="filepath", format="wav")
generate_btn.click(
fn=generate_podcast_gradio,
inputs=[input_text, input_file, language, speaker1, speaker2, api_key],
outputs=[output_audio]
)
demo.launch()
if __name__ == "__main__":
main()